《分数与除法》教案(精选14篇)

发布时间:

《分数与除法》教案(精选14篇)

《分数与除法》教案篇1

教学内容:

分数与除法的关系

教学目标:

1、使学生理解分数与除法的关系,掌握两个自然数相除,可用分数表示。

2、运用分数与除法的关系,学会把低级单位的名数聚成高级单位的名数,并学会解答“求一个数是另一个数的几分之几”的应用题。

教学过程:

一、复习

1、说说下面各分数的意义,分数单位,以及有几个这样的分数单位。

2、看句子说把看作单位“1”,平均分成分,占其中的份。

二、教学应用题

例2把1米长的钢管平均截成6段,每段长多少米?

分析:求每段长多少米,就是求每份数

列式:1÷6=1/6(米)

根据分数的意义,把一米长的钢管看作单位“1”,平均分成6份,表示这样1份的数

二、引入新课

1、分数与除法有什么关系?

2、教学例3

把3只月饼平均分成4份,每份是多少只?

分析:(1)每份是多少?就是计算3÷4得多少

(2)图示,把3只月饼平均分成4份,每人得到的1份,是3只月饼的1/4,也就是一只月饼的3/4。

因此:3÷4=3/4(只)

3、找一找

(1)分数与除法的关系

两个自然数相除,它们的商可以用分数表示。

被除数÷除数=被除数/除数

(2)想一想,分数的分母能是0吗,为什么?

三、巩固练习

例4五年级同学参加登山活动,男同学有36人,女同学有9人

(1)男同学人数是女同学的几倍?

(2)女同学人数是男同学的几分之几?

分析:男同学人数是女同学的几倍,是以女同学人数为标准,就是求36里面有几个9,用除法计算36/9。女同学人数是男同学的几分之几,是以男同学人数为标准,就是求9是36的几分之几,也用除法计算9/36。

答:男同学人数是女同学的4倍。

女同学人数是男同学的9/36。

四、总结归纳

1、求一个数是另一个数的几分之几,用除法计算的道理。

2、让学生应用求一个数是另一个数的算理。

五、布置作业

反思:这节课的重点是分数与除法的关系。学生比较容易理解表象,记住分数与除法的关系。但对于深层意义的理解比较困难。教师应采用多种教学手段,在学生自己总结的基础上来掌握概念。可能效果会更好些。在教学谁是谁的几分之几的时候,对于如何列式子的指导应该从谁是谁的几倍这个知识点着手来教学比较妥当。

《分数与除法》教案篇2

教学目标:

1、在具体情境中通过观察、比较、发现、理解分数与除法的关系,并会用分数表示两个数相除的商。

2、运用分数与除法的关系,探索假分数与带分数的互化方法,初步理解分数与带分数互化的算理,会正确进行互化。

教学重点:

1、掌握分数与除法的关系,会用分数表示除法的商。

2、运用分数与除法的关系,正确进行假分数与带分数的互化。

教学教法:

为了完成上述教学目标,突出重点,突破难点,我主要采用创设情境法、引导探究发现、归纳等教学方法。在探索知识本质规律处适当给予启发、指导、点拔,帮助学生完成探索知识的过程。

教学过程:

一、情境导入,引出新知。

课件播放“分饼”情境,学生观察说出相应的除法算式和用分数表示每人分得的块数。这个环节承接了上一节课学生熟悉的分饼情境,引出“除法”与“分数”这两个教学内容的主角。

二、探究发现,归纳认知。

1、分数与除法的关系。这时教师及时将学生分饼的思维顺向发展,快速练习

(1)、把a块饼平均分成8份,每份是多少块?

(2)、把a块饼平均分成b份,每份是多少块?

学生先写出除法算式,再用分数表示结果,教师板书

1÷2=1/2块

9÷4=9/4块

a÷8=a/8块

a÷b=a/b块

通过这个练习完成从个别到一般的思维过渡,为充分发现分数和除法的关系创造条件。

2、归纳认知,明确关系。

(1)、学生观察思考:分数和除法有怎样的关系?

(2)、汇报发现。

板书:被除数÷除数=

(3)、引导思考:在除法中除数不能为0,那在分数中应该有怎样的规定呢?

学生讨论得出:分母不能为0。

板书:(除数不为0)。

3、尝试用字母表示。

4、及时练习。

2÷3=8÷7=16÷5=10÷12=

5/6=÷13/15=÷()

12/7=÷100/6=÷()

(二)假分数与带分数的互化。

怎样把7/3化成带分数呢?怎样把2化成假分数?

1、学生进行小组合作学习。师出示温馨提示,引导学生合作学习。

2、检测合作学习效果。

3、师做针对性点评。

4、及时练习。

课本40页第2题。这个环节引导学生探索出假分数与带分数的互化方法,并采取边学边练的形式,使知识得到及时巩固。

四、全课小结,学生谈收获。

学生总结出本课的知识点,对本节课的学习形成一个完整的认识。

板书设计:

板书是一节课的缩影,我的板书就是抓住本节课的教学重点分数与除法的关系来进行设计的。

《分数与除法》教案篇3

教学目标:

1、使学生充分理解分数混合运算的运算顺序,明确分数混合运算与整数混合运算的关系,并能正确、熟练地进行计算。

2、能运用所学的有关分数混合运算的知识解决生活中的实际问题,感受解决问题方法的多样性与灵活性,提高计算能力和解决问题的能力。

教学重点:

能用所学知识解决生活中的实际问题。教学难点:能运用多种方法解决生活中的实际问题。教具准备:多媒体,小黑板。

教学过程:

(一)情境引入,回顾再现。

陈爷爷每天绕操场跑6圈,2分钟可以跑半圈。照这个速度,陈爷爷每天跑步要用多少时间?

学生解答:6÷(1/2÷2)=6÷1/4=24(分)

师:这就是我们学过的.有关分数混合运算的知识,这节课,我们就来进行相应的练习。

(二)分层练习,强化提高。

1、练习九的第1题,。提示:对于三步计算的题来说,如果选择比较合理的算法,也只要两步就能完成计算。

2、计算下面各题

2/9x0.375÷6/7

4÷8/3–0.6

引导学生注意:遇到小数计算,要先化成分数再进行计算。

3、解下列方程

5X=15/19

2/3X÷1/4=12

4、这篇文章太长了,3小时才录入了1/3。照这样的速度,李叔叔工作8小时,可以录入这篇文章的几分之几?还剩几分之几没有完成?

(对于本题来说,如果学生列成8÷3×1/3也是对的。)

5、练习九的第10题。

要求学生按照指定的程序计算,再通过比较,有所发现并作出解释。如果计算正确,就能发现得数等于原来的数。其原因是2/

3、3/4的倒数与1/2的积正好是1。

(三)自主检测,评价完善

出示检测题卡,让学生独立完成后,集体交流纠正。

(四)归纳小结,课外延伸

1、通过这节课的练习,你掌握了哪些知识?

2、把你的感受写一写,写成一篇周记的形式。

《分数与除法》教案篇4

学情分析:

五年级的学生已具有一定的操作、观察、归纳概括能力,有了以前学习分数乘法、倒数的基础,让学生通过涂一涂、算一算、想一想、填一填的活动来总结分数除以整数的计算方法,对于学生来说,难度不大。

教学内容分析:

《分数除法(一)》是第三单元第二课时的内容,是在学生学习了分数乘法、认识了倒数的基础上进行教学的,教材中呈现了两个问题,就是把4/7分别平均分成2份、3份,目的是让学生在涂一涂、算一算的过程中,借助图形语言,利用已学过的分数乘法的意义解决有关分数除法的问题,从而理解分数除法的意义,并从中总结出分数除以整数的计算方法。

教学目标:

1、在涂一涂、算一算等活动中,探索并理解分数除法的意义。

2、引导学生探索并掌握分数除以整数的计算方法,并能正确计算。

3、能够运用分数除以整数的方法解决简单的实际问题。

教学重点:

引导学生探索并掌握分数除以整数的计算方法,并能正确计算。

教学难点:

1、探索分数除以整数的计算方法。

2、能够运用分数除以整数的方法解决简单的实际问题。

教学方法:

导学教学法

创新理念:

“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。“学生是数学学习的主人,教师是数学学习的.组织者、引导者、合作者”。基于以上理念,在教学过程中,我采用“导学教学法”,充分发挥了教师的引导作用,让学生在动手实践的过程中去探索新知,亲身经历知识形成的全过程。

教具准备:

长方形纸、课件。

教学流程:

一、创设情境提出问题

(1)把一张纸的4/7平均分成2份,每份是这张纸的几分之几?

(2)把一张纸的4/7平均分成3份,每份是这张纸的几分之几?

【设计意图:创设分长方形纸这一情境,旨在一上课就把学生带入思考的空间,抓住他们最佳的学习状态。】

二、自主探究小组交流

(教师指导学生自主探究,尝试解决以上两个问题,同桌之间交流想法)

自主学习提示

1.利用手中的的学习纸,涂一涂,算一算,尝试解决这两个问题。

2.同桌之间说一说彼此的想法。

3.有困难的同学,可以借助课本第25页的提示,完成这两个问题。

【设计意图:在本环节教师指导学生自主学习,发挥学生探究主体性,对于多数学生而言教师不要过多提示,主要指导学困生完成探究任务。】

三交流释疑

1、初步感知分数除法

把一张纸的4/7平均分成2份,每份是这张纸的几分之几?

请同学们拿出图(一)来涂一涂。

交流:为什么要这样涂,每份是这张纸的几分之几呢?

还有不同的涂法吗?

能根据这个过程列出一个除法算式吗?

这个除法算式和以前学的除法有什么不同?

这就是这节课我们要学习的分数除法。(板书)

【设计意图:通过涂一涂的活动,在教师的引导下,让学生列出除法算式,使学生初步感知分数除法的意义。】

2、初探算法

把一张纸的4/7平均分成3份,每份是这张纸的几分之几?

请大家在图(二)的上面涂一涂。

交流:(展示学生不同的涂法)

同学们是把长方形纸的七分之四平均分成了三份,再把其中一份涂上颜色。谁能根据这一过程列出一个算式。

怎样才能算出得数呢?

(师提问:计算时为什么要用×1/3?)

观察3和1/3有什么关系,由除以3变成乘3的倒数,是不是除以一个整数就可以乘它的倒数呢?我们来验证一下。

(教师出示三组算式)

1/3÷54/5÷31/3÷5

指生口算。

让学生观察每一组算式,说一说发现了什么?

根据这三组算式再结合上一道题,你认为分数除以整数可以怎样计算?

(学生口述算法后)

【设计意图:分数除以整数的计算方法在本节课既是教学的重点,又是难点,为了使学生更好的掌握这部分知识,我先让学生通过涂一涂,进一步感知分数除法的意义,初步感知分数除以整数的计算方法,然后提出是不是除以一个整数就可以乘它的倒数呢?通过三组算式来验证提出的假设,这样让学生在教师的引导下,亲身经历了知识形成的全过程,突破了教学重难点。】

四、实践应用

1、算一算

9/10÷3015/16÷20xx/15÷218/9÷65/6÷15

2、填一填

师:学会了知识就要灵活的运用,这道题你们能填上吗?

学生独立在书上第26页填一填,想一想。

集体订正。

3、解决问题。

师:为了使我们的校园更整洁,学校给我们各班划分了卫生区,这一周轮到第一组负责卫生区的卫生,老师想卫生区的四分之三平均分给四个人来负责,你们能算出每个人负责整个卫生区的几分之几吗?

学生在练习本上列式解答。

指生汇报完成情况。

运用分数除法能解决生活中的很多问题呢,谁能像老师这样来说一说生活中的问题,让大家解决。

(指生口头编题,其他学生解决)

【设计意图:通过形式多样、难易程度适当的习题,让学生在有层次的练习中巩固本节课的知识,使学生的思维得到发展。】

五、课堂总结

学生谈一谈本节课的收获。

同学们,这节课你们过的快乐吗?学习本来就是一件快乐的事,老师希望今后你们能快乐的学习,快乐的成长。

六、布置作业:

22页练一练

七.板书设计:

分数除法(一)

——分数除以整数

分数除以整数的计算方法:除以一个整数(零除外),等于乘这个整数的倒数。

(1)4/7÷2(2)4/7÷3

=4/7×1/2

=2/7

教学反思:

《分数除法(一)》是学生初次接触分数除法,本节课是学生今后学习分数除法的基础,让学生理解分数除法的意义以及对算法的探索就显得格外重要。本节课我力求体现以下几点:

一、充分利用学生最佳的学习状态

课堂上省去了旧知的复习,设计简单的知识情景,以最快的速度抓住学生有效学习时间,提高课堂有效性。

二、让学生在不同的活动中探索数学。

数学课不应只让学生单纯地模仿和记忆,应让学生在具体地操作、观察、实践中得出结论。因此,课堂上我让学生通过操作、观察,引导学生探索出分数除以整数的计算方法,让学生经历了知识形成的全过程。在这样的过程中,充分地发挥了教师的引导作用,注重的是学生能力的培养,注重的是教给学生学习的方法,而不是把知识单纯的传授给学生,做到既重结果,又重过程。

三、让学生在不同层次的练习中应用数学。

学数学的目的就是用数学。在新课结束后,我让学生在不同层次的练习中应用了所学知识,让学生充分感受到了数学源于生活,又寓于生活。

《分数与除法》教案篇5

内容:

本册教科书第28页例2和练习八第1~4题。

教学目的:

使学生理解一个数除以分数的算理,掌握一个数除以分数的计算法则,正确计算一个数除以分数。

教学过程:

一、复习

1、说出下列各分数的分数单位,每个分数中有几个这样的分数单位,并说出每个分数的倒数。

1/5、3/4、7/16、9/9

2、口算下面各题。

1/6÷3、4/5÷2、3/8÷6、6/7÷2

提问:怎样计算分数除以整数的题目?(用分数乘以整数的倒数。)

3、解答应用题。

一辆汽车2小时行驶90千米,1小时行驶多少千米?(第28页的准备题。)

提问:这道题要求的是哪个数量?(求速度。)根据已学的.数量关系怎样求速度?(板书:速度=路程÷时间)

指定一名学生列式解答。

二、新课

揭示课题:我们已经学过分数除以整数,如果除数是分数,该怎样计算呢?今天我们就来研究一个数除以分数的计算方法。

1、出示例题。

一辆汽车小时行驶18千米,1小时行驶多少千米?

提问:这道题要求哪一个数量?根据已学过的数量关系,这道题应该怎样列式?

指名列出算式,教师板书:18÷。

2、教学整数除以分数的计算方法。

教师先在黑板上画一条线段。然后提问:在图上怎样表示“小时行驶18千米”这个已知条件?(引导学生回答,教师画出。)先把这条线段平均分成5份,每份表示小时行的;在这样的两份下面注明“小时行驶18千米”。

提问:“1小时行驶多少千米,在图上怎样表示?”(指名回答,教师画。)因为1小时是5个小时,在这条线段的5份上面注明“1小时行驶?千米”。

提问:要求1小时行驶多少千米,根据线段图该怎样推想呢?可以先求什么?(启发学生说出,可以先求小时行驶多少千米。)

提问:图上哪一段表示小时行驶的路程?(教师在图上左边的一份上面注明“小时行驶?千米”。)

提问:怎样求出小时行驶多少千米?(启发学生说出小时里有2个小时,2个小时行驶18千米,用18÷2就可以求出小时行驶的千米数。)

提问:18÷2也就是求18的几分之几?可以怎样写?(学生回答后教师写出“18”。)

提问:现在已经求出小时行驶的千米数,怎样求出1小时行驶的千米数?(启发学生说出,1小时里有5个小时,要用小时行驶的千米数乘上5。)然后教师在“18”后面再写“5”。

提问:想一想,根据乘法结合律,185还可以怎样写?(启发学生说出,先把和5相乘。)教师板书:18(5)=185=18。

提问:“由上面的推想过程,18÷转化成什么样的计算了?”学生回答后,教师边重复学生的回答,边写出下面的计算过程:

18÷==45(千米)

写出答案“答:汽车1小时行驶45千米。”

3、引导学生小结。

“整数除以分数,等于整数乘上除数的倒数。”

三、看教科书中新课内容后试算

全体学生独立计算“做一做”中的练习题:

12÷24÷

集体订正计算过程及结果,并提问一个数除以分数的法则。

四、课堂练习

在练习本上计算练习八第1、2题,然后订正计算结果。

五、总结

今天学习了什么新知识?

整数除以分数的计算法则是什么?

计算整数除以分数应注意什么?

六、布置作业

1、阅读教科书第28~29页的内容。

2、在练习本上做练习八第3、4题。

《分数与除法》教案篇6

教学内容:

49~50页的内容及练习十二1~12题。

教学目标:

1.知识与能力:并会用分数表示两个数相除的商,明确可以用分数表示两个数相除的商。

2.过程与方法:通过观察、探究,理解分数与除法的关系,经历分数与除法的关系的探究过程

3.情感、态度与价值观:通过观察、探究,渗透辩证思想,激发学生学习兴趣。

教学重点:

掌握分数与除法的关系,会用分数表示两个数相除的商。

教学难点:

理解可以用分数表示两个数相除的商。

教具准备:

课件

教学过程:

一、复习导入

1.表示什么意思?它的分数单位是什么?它有几个这样的分数单位?

2.把一根铁丝平均截成3段,每段的长度是这根铁丝的几分之几,把谁看作单位“1”?

3.引入:5除以9,商是多少?板书:5÷9

如果商不用小数表示,还有其他方法吗?学习了分数与除法的关系后,就能解决这个问题了。板书课题:分数与除法。

二、新课讲授

1.教学例1:出示题目

(1)列出算式。(板书:1÷3=)

(2)讨论:1除以3结果是多少?你是怎样想的?

(3)教师画出示意图。把一个蛋糕平均分成3份,其中一份应是这个蛋糕的,就是个“1”。

板书:1÷3=1/3(个)

2.教学例2:出示题目

(1)动手操作。拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。

(2)口述方法及每份分得的结果,教师总结几种不同的分法。

(3)归纳:从上面的操作可以看出,把3块饼平均分成4份,无论怎样分,每一份都是3块饼的,即3个块,把3个块饼合起来就是1个饼的,即块,因此,3÷4=3/4(块)。

由此可见,不仅可以理解为把1块饼(单位“1”)平均分成4份,表示这样的3份的数,也可以看作把3块饼组成的整体(单位“1”)平均分成4份,表示这样1份的数。

学生相互说说表示的意义。

3.教学分数与除法的关系。

(1)观察1÷3=3÷4=这两道算式,

想一想

①两个(非0)自然数相除,在不能得到整数商的情况下还可以用什么数表示?

②用分数表示商时,除式里的被除数,除数分别是分数里的什么?

③分数与除法的关系是怎样的?

(2)总结三点

①分数可以表示除法的商。

②在表示除法的商时,要用除数作分母,被除数作分子。

③除法里的被除数相当于分数里的分子,除数相当于分数里的分母(强调“相当于”一词)。分数与除法的关系可以表示成下面的形式

(3)如果用a表示被除数,b表示除数,那么分数与除法的关系可以怎样表示

板书:a÷b=a/b(b≠0)

(4)这里的b能为0吗?为什么?

明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除数,分母相当于除数)

(5)分数与除法有区别吗?区别在哪里?

(分数是一种数,但也可以看作两个数相除,除法是一种运算)

4.教学例3:出示题目

(1)列出算式。板书:7÷10

(2)怎样计算?。7÷10=

三、巩固练习。

1.做一做:独立完成,集体订正。

2.练习十二的第1、2题:独立完成,订正时说一说怎样计算。

第3、4题:做在书上,集体订正。

第5、6题:独立完成,订正时说一说是怎么想的。

3.作业:练习十二7----11题,选作12题。

四、课堂小结

这节课学习了什么知识,你有哪些收获?

板书设计:

分数与除法

例1:1÷3=1/3(个)

例2:3÷4=3/4(个)

例3:7÷10=7/10

《分数与除法》教案篇7

教学目标:

1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。

2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商。

3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。

教学重难点:

重点:掌握分数与除法的关系,会用分数表示两个数相除的商。

难点:理解可以用分数表示两个数相除的商。

教学过程:

一、导入揭题。

1、复习:76是数,它表示。10/7的分数单位是,它有个这样的分数单位。

2、观察:5÷8=4÷9=这两道题能得到整数商吗?

3、谈话:同学们,在计算整数除法时经常会遇到除不尽或得不到整数商,有了分数就可以解决这个问题了,这是什么原因呢?这节课就让我们一起来探究分数与除法的关系。板书课题:《分数与除法》。

二、探索新知

1、教学例1

(1)课件出示例1

把一个蛋糕平均分给3人,每人分得多少个?

(2)同桌讨论交流:根据分数的`意义怎样解决“把一个蛋糕平均分给3人,每人分得多少个?”这个问题。

(3)汇报讨论结果

(4)观察这两种解法有什么联系?

2、教学例2、

把3个饼平均分给4个孩子,每个孩子分得多少个?

(1)平均分同样可以列式为:3÷4。

(2)小组合作探究:3÷4的商能不能用分数表示呢?

(3)通过进一步探究,你发现分数与除法有什么关系了吗?

师生共同小结:被除数÷除数=除数被除数,被除数相当于分数的(分子),除数相当于分数的(分母),a÷b=ba(b≠0)想一想:为什么要注明b≠0?

三、拓展应用

一个正方形的周长是64cm,它的边长是周长的几分之几?

四、总结

通过这节课的学习,你有什么收获?

五、作业布置

完成教材第50页"做一做"

《分数与除法》教案篇8

教学目标

1、结合具体情境观察比较,理解分数与除法的关系,会用分数来表示两数相除的商。

2、运用分数和除法的关系,探索假分数与带分数的互化方法,初步理解假分数与带分数互化的算理,会正确进行互化。

教学重点、难点

1、理解掌握分数与除法的关系。

2、会对假分数与带分数进行正确互化。

教学过程

活动一:创设情境,引导探索。

师出示例1:我想调查一下,最近那位同学要过生日?指一名同学说说你过生日的时候必须要买什么食品?(生:蛋糕)买了蛋糕是自己吃,还是同爸爸妈妈一起吃?

师:同学们愿意帮x同学分一分蛋糕吗?

生:愿意!

师:出示蛋糕,接着出示例2:把一个蛋糕平均分给3个人,平均每人能分得多少?

师:这时,应该把什么看作单位“1”?

要把蛋糕平均分成几份?怎样列式?(指名口述算式)1÷3=

师:大家拿出练习本来计算这个商是多少?

生:3(1)

师:对了!那么上面的算式1÷3的商可以用分数1/3表示了。

即:1÷3=3(1)(个)

答:每人分得3(1)个。

活动二:剪一间,拼一拼。

师:“六一”联欢的时候,我打算买3张非常好吃的比萨饼,想和班主任刘老师、还有两名在这学期进步最大的同学A和B共同分享,大家能帮我们合理的分一下吗?

生:想!

师:出示例2:把3张饼平均分给我们4个人,每人分得这3张饼的几分之几呢?

①议一议:这里应该把哪个量看作单位“1”的量?用什么方法分?有哪些分法?(让同学们充分考虑好后,说说自己的想法)[课件显示3张饼]

②剪一剪:下面我们用事先准备好的3个圆形表示这3张饼,请同学们以小组剪一剪,并把分好的四份摆在桌子上。[课件显示把3张饼分成了4份]③拼一拼:分好后,请同学们每人取一份拼在一起,看看每份是一个“饼”的几分之几?[课件显示拼好后的3/4个饼]

④列一列:怎样用算式表示分饼的数量关系?谁会列式?

⑤算一算:师指一名同学板演算式:3÷4=4(3)(张)

答:每人分得4(3)张。

观察刚才所得结果:

1÷3=3(1)3÷4=4(3)

讨论、感知关系

讨论完毕后,指几名同学代表自己的小组总结:学生口述的过程中,教师出示课件:

被除数÷除数=被除数/除数

如果分别用字母a和b表示除法算式中的被除数和除数,分数与除法的这种关系怎样表示?

学生回答,师板书:a÷b=a/b

师:大家考虑:这里的`a和b是否可以是任何自然数?为什么?

生:不可以,因为这里的b≠0

师:左侧b≠0,那么右侧的b是否可以是0?为什么?

师:讨论完后,教师用红色粉笔标上:b≠0

活动三:总结提升,归纳关系。

1、让学生说一说分数与除法的联系:分子相当于除法中的被除数,分母相当于除法中的除数,分数线相当于除法中的除号。

2、判断:“分数就是除法,除法就是分数”这句话对不对?

活动四:课堂检测(一)

1、填空:课本P39试一试1。

2、用分数表示下面各式的商。

1÷4=3÷4=8÷3=7÷3=

1÷7=13÷4=5÷2=4÷9=

活动五:假分数带分数互化。

师:观察练习2中的分数哪些是真分数,哪些是假分数?如何将这些假分数化成带分数呢?

生:小组讨论思考

师:以7/3为例讲解,课本P39T2、3

师生共同总结互化方法。

1、将假分数化为带分数:分母不变,分子除以分母所得整数为带分数左边整数部分,余数作分子。

2、将带分数化为假分数:分母不变,用整数部分与分母的乘积再加原分子的和作为分子。

活动六:课堂检测(二)

课本P40练一练的2、3。

课后作业

用一张16开的纸设计一张数学报,说说各栏目所占的篇幅约占这张报纸的几分之几。

《分数与除法》教案篇9

第二课时

教学内容:

教学目标:

知识目标:

体验分数除以整数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。

能力目标:

培养学生动手动脑能力,以及判断、推理能力。

情感目标:

培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。

教学重点:能求一个数的倒数。

教学难点:分数除以整数计算法则的推导过程。

教学准备:长方形纸片。

教学过程:

一、创设情景,教学分数除法的意义

1、师:同学们我们学过整数除以整数以及小数除法,今天我们将来学习数除法。下面我们一起来研究一下几个小朋友有关分饼的问题,请你们列出算式并计算,看谁算的又快又好!

(1)每人吃1/2块饼,4个人共吃多少块饼?

(2)把2块饼平均分给4个人,每人吃了多少块饼?

(3)有2块饼,分给每人1/2块,可分给几个人?

2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。

师:讨论:分数除法的意义和整数除法的意义一样吗?

总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

二、探究分数除法的计算方法

(1)引导参与,探究新知

师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

出示问题1。

请大家拿出一张操作纸,涂色表示出这张纸的4/7。

师:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?怎样列式?4/7÷2

请同学们通过涂一涂,算一算的方式来研究4/7÷2怎样计算。小组合作,汇报交流。

方法一:把4/7平均分成2份就是把4份平均分成2份,每份是2个1/7,也就是2/7。展示折纸和计算过程。4/7÷2=4÷2/7=2/7

方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/7的1/2是多少,可以用乘法来做。展示折纸和计算过程。4/7÷2=4/7×1/2=2/7

师:对这种做法大家有什么疑问吗?

生:这儿是除法怎么变成了乘法?

师:老师也有这个疑问,你能讲讲吗?

师:谁能结合图来讲一讲呢?

师:很好!把除法转化成乘法,问题迎刃而解,你真棒!……

(2)质疑问难,理解新知

①师小结:有的是用分子除以整数,分母不变的方法算出结果2/7,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?

②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/7平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的方法计算。

③通过计算你们有什么发现?

生1、用第一种方法就不能做了。因为:上一题的时候,分子4是2的倍数,4÷2能得到整数商。而4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。

生2:把除法转化成乘法来做……4/7÷3=4/7×1/3=4/21

能再讲讲这样做的道理吗?

师:“4/7÷3”表示把4/7平均分成3份,取其中的一份。

请同学们拿出第二张操作纸,你能把图中的4/7平均分成3份,并表示出其中的一份吗?

展示学生的分法

师(指着涂色部分):你所表示的这一部分是4/7的多少?

通过直观图理解4/7的1/3是4/21

(3)比较归纳,发现规律。

①师:在计算这两道题时同学们想到了不同的算法,计算左边这道题你比较喜欢那种方法?右边呢?

②在两道题的计算中同学们都想到了把除法转化成乘法来做,请观察一下,左边这道算式,在转化的前后什么变了,什么没变?怎么变的?

③师:同学们观察真仔细!那像这样的分数除以整数的题目一般可以怎么计算呢?请同学们在小组内互相说一说!

小组活动,说算法。

④师:通过研讨我们知道了分数除以整数,可以用分子除以整数,但有时不能得到整数商,所以通常转化为乘这个整数的倒数的方法来计算。

出示:分数除以整数,等于分数乘这个整数的倒数。

还有需要注意的地方吗?

生:有,除数不能为0。

师:谁能把分数除以整数的计算法则用自己的话来说一说?

完善算法:分数除以整数(0除外),等于分数乘这个整数的倒数。

⑥那象这样的分数除以整数的题目在计算时要注意些什么?

生:要约分!结果最简。除号要变成乘号!

三巩固练习

学生独立完成

四、课堂小结

1、这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?(学生总结)

板书设计:

分数除以整数

教学反思:

有了分数乘法的学习基础,学生们能够很快适应这一课的学习方式,我从现实中的分数乘法问题和找一个数的倒数引入,帮助孩子们复习前知,当学生体会到乘除法之间的互逆关系后,由学生提出一个生活中的实际问题,引出分数除法计算的必要性,为后续的学习架好了阶梯。

本课如果仅仅关注学生是否会算了,那是不够的,在设计中,还应有另类关注。如:学生们对算理理解了吗?他们的思维是否得到了实质上的提升?他们的学习方法是否得到增进?他们是否有学习的.积极态度?等等。因此,在本课教学目标的制定中,我的着眼点是不仅使学生会算,更是通过对意义的理解,让学生们深刻认识这样算的道理,突出“过程性目标”。让学生经历涂一涂、画一画、算一算、说一说的过程,在探究的过程中,让孩子们形成一种“知其然更要知其所以然”的学习态度,获取一种学习的能力,为学生的可持续发展打基础。教学中,我关注学生经历发现数学知识的过程,给学生提供动手的机会,充分借助图形语言,将抽象变直观,帮助学生体会一个分数除以整数的意义,以及“除以一个整数(零除外)等于乘这个整数的倒数”方法的合理性。接着变换探索的角度,呈现一组算式,在运算、比较的过程中再次使学生验证操作活动中发现的规律。给学生表达学习过程中体验和感悟的空间,如:谁来说一说这种算法是怎样的?你的想法是怎样的?学生在自主表达的过程中逐步积累原始体验,再通过教师的适度点拨,提升学生的数学思维。

《分数与除法》教案篇10

教学目标:

1.使学生理解两个整数相除的商可以用分数来表示。

2.使学生掌握分数与除法的关系。

3.培养学生的应用意识。

教学重点:

1.理解归纳分数与除法的关系。

2.用除法的意义理解分数的意义。

教学准备:

课件、圆片

教学过程:

一、复习引入

师:同学们,上节课我们学习了分数的产生和意义。在进行测量、分物或计算时,往往不能正好得到整数的结果,这时,我们常用分数来表示。那么什么是分数呢?(学生回答分数的意义)

课件出示练习题

(1)把一根铁丝平均截成3段,每段的长度是这根铁丝的几分之几?这道题把谁看作单位“1”?

(2)把9个香蕉平均分成3份,每份是这些香蕉的几分之几?每份有几个?

(3)把1包饼干平均分给2个人,每人分得(1/2)包。

引入:知识与知识之间存在着许多密切的关系,这节课我们来研究一下分数与除法之间的关系。(板书课题)

二、探究新知

课件出示习题

(1)把18个蛋糕平均分给3个人,每个人分得多少个?(列式计算)

(2)把6个蛋糕平均分给3个人,每个人分得多少个?(列式计算)

师:这两道题都是我们学过的用除法来解决的问题,计算的都是把一个整体平均分成3份,求每份是多少。下面我们再来看一下这道题。

出示例1:把1个蛋糕平均分给3个人,每个人分得多少个?

师:这道题该怎样列式呢?(学生列式,师板书:1÷3)

师:1÷3表示什么意思?

生:1÷3表示把一个蛋糕平均分给3个人,求一个人分得多少。

师:好,这道题也是把一个整体平均分成3份,求一份是多少,也是平均分的问题,所以也要用除法来计算。那么,你知道每人分得多少个吗?

生:1/3个。(师板书)

师:大家都认为是这样吗?(是)谁来说说你是怎么想的?

教师出示课件,学生边说边演示:我们把这个圆看作这个蛋糕,把它平均分成3份,每人得到其中的一份,也就是这个蛋糕的1/3。

师:请大家看,每份都是1/3,每个人得到的是多少个蛋糕呢?

生:1/3个。

师:在分物时,不能正好得到整数的结果,我们就可以用分数来表示。所以每个人分得的蛋糕就是个。

教师说明:1÷3表示把一个蛋糕平均分给3个人,求每人得到多少个,而我们通过演示知道了每人得到1/3个。所以1÷3的结果就是1/3。(板书“=”)(齐读算式)

师:一个蛋糕平均分给3个人,我们知道了每人分得1/3个,现在要分一些其它的物品,你会吗?(课件出示例2)

指名读题

师:谁能列出算式?

生:3÷4(师板书)

师:这道题是把一个整体平均分成4份,求每份是多少,也是用除法来计算的。究竟每人分得多少块月饼呢?老师为每个小组都准备了学具(3个圆片),现在请大家利用手中的学具一起动手分一分,看看到底每人分得多少块月饼。

小组操作,教师巡视指导。

师:大家都有了结论了,哪个小组的同学愿意来给大家说一说你们小组的结论是什么?

(小组边汇报,边演示)

小组1汇报:我们小组是一个一个分的。我们先把一个圆平均分成4份,每人得到其中的1份,也就是1/4块。

师:你能用一个式子表示一下吗?

小组1:1÷4=1/4块。

师:好。请接着汇报吧。

小组1:接下来,我们按照同样的方法分其他两个圆。最后每个人分到的是3个1/4块,也就是3/4块。

师:大家认为他们的方法可以吗?(可以)我们再来一起回忆一下他们的方法。(教师边叙述方法,边进行课件演示)

师:还有没有和这组方法不同的?

小组2汇报:我们小组是把3个圆叠放在一起,把它们一起平均分成4份,每人得到其中的1份,拼在一起就得到了3/4块。

师:(课件演示方法二)这种方法是把3块月饼放在一起,把它们看成一个整体,平均分成4份,每人得到了其中的一份,也就是3块月饼的1/4,拼在一起就是3/4块。

师:通过大家操作我们知道了每人得到了3/4块月饼(板书3/4块)。有些同学是一块一块分的,有些同学是3块一起分的,但这两种不同的方法都得到了3/4块,也就是说3÷4的结果就是3/4。

师:请大家看一看,今天这两道除法算式的结果都是什么数?(分数)请大家想一想,分数与除法有什么关系呢?

学生小组讨论

生:我们发现,被除数就是分子,除数就是分母。

师:你能试着表示出来吗?

生:被除数÷除数=被除数/除数(师板书)

师:如果用a来表示被除数,b表示除数,你能用字母来表示分数与除法之间的关系吗?

生1:a÷b=a/b(师板书)

生2:老师,我认为还要写上b≠0。

师:为什么b≠0?

生:因为b表示除数,除数不能为0。

生:分数的分母也不能等于0。

师:好。通过观察思考,我们知道了分数与除法存在着这样的关系(齐读分数与除法的关系)

师:我们知道,两个整数相除,商可以用分数来表示,反过来看看,分数能不能表示两个整数相除呢?

学生观察算式,思考

生:可以。比如3/4=3÷4。

课件出示,齐读:两个整数相除,商可以用分数来表示,要用除数作分母,被除数作分子。反之,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,

分数线相当于除号。

师:我们通过学习了解了分数与除法的联系,那么分数与除法有什么区别呢?

请学生观察黑板算式,和同学讨论。

学生汇报,教师总结:除法和我们学过的加法、减法、乘法一样,是一种运算;而分数是一种数,同时分数也可以表示两个数相除。

三、巩固练习

1.用分数表示下列算式的商

7÷13=3÷11=8÷5=

9÷16=m÷n=

2.试一试

()÷7=4/71÷()=1/3

7/9=()÷95/8=()÷()

3.把1千克葡萄干平均装在2个袋子里,每袋重多少千克?平均装在3个袋子中呢?

4.填空(练习十二3题)

5.把5米长的绳子平均截成8段,每段长(5/8)米,每段绳子的长度是全长的(1/8)。

四、全课总结

《分数与除法》教案篇11

教学内容:整数除以分数和平共处分数除以分数.教科书第30页例3第31的做一做,练习八的第4和5题。

教学目标:

1.通过具体的问题情境,探索并理解分数除法的计算方法。

2.确地进行分数除法的计算。

3.培养学生分析、推理能力。

教学过程:

一、复习引入

1.列式,说说数量关系。

小明2小时走了6km,平均每小时走多少千米?

速度=路程÷时间

2.填空。

2/3小时有个1/3小时,1小时有个1/3小时。

3.口算,说说分数除以整数的计算方法。

(1/6)÷3(4/5)÷2(3/8)÷6(6/7)÷2

(分数除以整数等于用分数乘这个整数的倒数,或者除以几等于乘几分之一)

4.引入课题。

我们已经学习了分数除以整数的分数除法,想一想,接下去应该学习什么?

今天这节课我们就来学习研究“一个数除以分数”的计算方法,看谁最先学会。

板书课题:一个数除以分数。

二、解决问题,发现算法

1.理解题意,列出算式。

(1)出示例3。

(2)学生读题,理解题意。

(3)列出算式,说出列式根据什么数量关系。

板书:2÷(2/3)(5/6)÷(5/12)

2.探索整数除以分数的计算方法。

(1)2÷(2/3)如何计算呢?让我们画出线段图看看。

(2)先画一条线段表示1小时走的路程(边说边板书),怎样表示2/3小时走了2km这个条件?

(将线段平均分成3份,其中2份表示的就是2/3小时走的路程。)

(3)指着图启发:已知2/3小时走了2km,要求1小时走了多少千米?可以先算什么,再算什么?把你的想法与小组成员交流讨论一下。

(4)根据学生的回答把线段图补充完整,板书计算思路。

先求1/3小时走了多少千米,也就是求2的1/2,算式:2×1/2

再求3个1/3小时走了多少千米,算式:2×(1/2)×3

(5)找出计算方法。

板书:(乘法结合律)

现在会算了吗?说说2×1/2是图上的哪一段,表示什么?(1/3小时走了1km)再乘3,得到的结果是图上的哪一段,表示什么?(1小时走了3km)

启发:刚才我们用2÷2/3求1小时走的路程,现在我们又发现,2×3/2也可以求1小时走的路程,所以

观察:除法转化成了什么运算?什么没有变?什么变了?是怎样变的?

强调:被除数没有变,除号变乘号,除数变成了它的倒数。

(6)小结:从上面这个推算过程中我们找到了整数除以分数的计算方法是:整数除以分数等于用整数乘这个分数的倒数。

板书,学生齐读。

3.探索分数除以分数的计算方法。

(1)让学生尝试计算5/6÷5/12。

我们已经通过2÷2/3找到了整数除以分数的`计算方法,分数除以分数的计算请你们自己试试看。

(2)学生汇报,教师板书:

(3)为什么写成×(12/5)?

(4)怎样验证这种计算结果是正确的?

学生可能回答:

①先求1/12小时走了多少千米,也就是求5/6的1/5,算式是5/6×1/5

再求12个1/12小时走了多少千米,算式是5/6×1/5×12

②用乘法验算。

(5)回答“谁走得快些”。

(6)小结:现在我们发现,无论是整数除以分数,还是分数除以分数,都是转化为什么运算,怎样用一句话来叙述这个计算方法?

让同桌学生相互议一议,再指名回答。

(7)看书质疑:看看书上是怎样总结的,和你们的叙述有什么不同?

强调:除以一个不等于0的数。

齐读法则。

三、巩固练习

1.口算。(采用口算对折卡片)

(1)不能约分的2÷3/5=1/3÷2/5=

(2)能约分的3÷3/4=2/7÷6/7=

2.完成课本第31页“做一做”第1题,填在书上。

第2题,写在课堂练习本上,写出过程。

3.直接写出得数。

1/3÷1/3=1÷1/3=5/6÷3=3/7÷6/7=3/7×7/9=

四、师生共同小结

1.这节课我们学习了哪些知识?

2.一个数除以分数的计算方法是什么?

五、布置作业(略)

《分数与除法》教案篇12

【教学目标】

1、结合具体的情景,巩固、掌握有余数除法的计算方法;

2、通过小组合作探究,理解余数一定比除数小的道理;

3、初步养成用数学解决实际问题的意识和能力。

【教学重难点】

在巩固、掌握有余数除法的计算方法的基础上理解余数一定小于除数。

【教学过程】

一、情景感知,适时提问。

1、用竖式计算

(1)57÷9(2)40÷8(3)38÷7(4)24÷6

(请学生独立完成,及时校对)

[设计意图:及时巩固学生已学知识,为这节新课的学习打下基础。]

2、课件出示例1,进入情境:用15盆鲜花来装饰联欢会的会场,以每5盆为一组,可以摆几组呢?

T:同学们,你们还记得这道题目吗?谁会列算式?(板书:15÷5=3(组))

二、探究发现,试作体验。

1、出示例题3:如果上一例中一共有16盆花,还是每5盆一组,最多可以分几组?多几盆呢?

T:如果现在变成了16盆花,条件没变,你还会算吗?这道题该怎样列算式呢?谁会算?(板书:16÷5=3(组)1(盆))

2、改变条件,花盆的总数变成了17、18、19、20盆,请学生分别再来列算式算一算(写在自己的本子上)。

T:如果是17、18、19、20盆,还是每5盆一组,那最多可以分几组?还剩几盆呢?你会算吗?怎么列算式?

三合作交流,试说分享。

1、请学生以小组分工合作的形式,先列式算一算,再讨论观察余数与除数,说说你们发现了什么?

T:前后4人为一小组,分工合作,每人做一题,并相互检查,看看有没有漏算,有没有算错,看哪一小组最先得出答案。(学生动手写一写)

T:现在哪一小组愿意将你们的计算成果和我们大家分享一下呢?(学生汇报,并板书)17÷5=3(组)2(人)

18÷5=3(组)3(人)

19÷5=3(组)4(人)

20÷5=4(组)

T:看来同学们的计算能力越来越好了。那现在我们来看看黑板上这几条算式的除数和余数,谁能来说说你发现了什么?细心的孩子一定发现了。

预设:除数比余数大;除数是5,余数可以是0、1、2、3、4.(真棒,你们观察得真仔细)T:可是,有人不服气了,我们一起去看看。(出示小精灵的话——不对不对,这只是个巧合,

如果数大一点,结果肯定就不一样了。)你们觉得是巧合吗?好,那现在我们就去验证一下,让它输的心服口服,怎样?有信心吗?

(增加花盆的总数,分别是21、22、23、24、25盆,让学生将课本上相应的`算式补充完整。——开火车汇报答案。)

21÷5=

22÷5=

23÷5=

24÷5=

25÷5=

2、课件出示所有算式,再来看看除数和余数,说一说余数为什么不能是“5”。(提示:被除数逐渐变大,除数不变,那余数呢?除数是“5”,余数可能有几种情况呢?)

3、归纳总结:(1)余数要小于除数;(2)知道除数是几,就能知道余数可能是几。

4、改变除数,不改变被除数,让学生试着做一做。(加深余数和商之间的密切联系,尤其让学生明白,当知道除数时,便可以知道余数可能是几)

16÷4=

17÷4=

18÷4=

19÷4=

四、知识梳理,适时拓展。

1、判断题:第52页的做一做,让学生判断,进一步明确“余数要比除数小”,并列出正确的竖式。

2、先做第一小题,并请学生说说自己判断的理由,引导学生理解:被除数=除数×商+余数。

3、解决问题:十月份有31天,十月份有几个星期?多几天?

4、拓展延伸,完成填一填。

5、同学们,这节课你有什么收获:你体验最深的是什么?

板书设计:

有余数的除法

17÷5=3(组)2(人)

18÷5=3(组)3(人)

19÷5=3(组)4(人)

20÷5=4(组)

余数一定要比除数小。

《分数与除法》教案篇13

一、说教材:

1、掌握一个数除以分数的方法,并能正确计算。

2、经历猜测、验证和归纳的过程,利用通分法计算的结果来推理出倒数法计算的过程。

3、利用数形结合的方式,体会“转化”的数学思维方法。

本课时的教学重点是运用计算方法正确进行计算,教学难点是理解一个数除以分数的计算方法。

二、说教法和学法:

本课时教师在教学中引导学生多看图观察,让学生经历猜测、验证和归纳的学习过程,使他们通过小组合作理解计算法则。

三、教、学具准备。

老师准备平均分成2份、3份和4份的圆纸片各4张,为学生准备一张练习纸,练习纸上画好三组没有平均分的圆纸片和书第27页上画一画的题目,把书中已画出的部分隐去,让学生亲自去画。

四、说教学过程:

1、复习铺垫,提供猜测基础。

数学的学习离不开学生的经验基础和认知水平,为了让学生能正确理解本课时内容,我首先出示复习题1:“把1/2张饼平均分给4个小朋友,每个小朋友能分到几张饼?”学生根据前一课时所学方法分别用倒数法:1/2÷4=1/2×1/4=1/8(张)或者用通分法:1/2÷4=1×4/2×4÷4=1/8(张)通过列式计算。然后让学生说一说计算法则。

接着出示题2:有4张同样大的饼,每2张一份,可分成多少份?

在解答这两题的基础上,我提出问题:猜一猜4÷1/2等于几?由于受到上一课时的负迁移,部分学生仍然会用一个分数乘整数的倒数,算成:1/4×1/2=1/8,当然也可能会正确计算出结果。这时教师适时引导学生明白:判断一个猜想是否正确,需要通过科学地验证。

这样的设计既为学生提供了学习新知识的经验基础,又能激起学生学习新知识的兴趣。

2、验证猜想,理解计算过程。

为了让学生更易理解题意,我把书中情境图改成具有生活气息的题目:有4张同样大的饼。每个小朋友吃1/2张,可分给几个小朋友吃?

学生在练习纸上画出平均分的过程,并通过小组合作形式理解计算的过程。反馈时,教师引导学生用自己的话说清计算的思路,大部分学生会认为1张饼里有2个1/2,可以分给2个小朋友吃,4张饼就能分别8个小朋友吃,列式为:4÷1/2=4×2=8(个)。但这个过程并不能使学生自然过渡到对倒数法解题的理解,也就是说,学生通过4÷1/2=4×2=8(个)并不能理解4÷1/2可以用4×1/2的倒数来计算。这时我引进了通分法来计算:让学生观察示意图,理解4÷1/2就是求4里面含有几个1/2。而4就是8/2,根据学生以前知识结构,学生易于知道里有8个,最后根据学生的回答板书计算方法,4÷1/2=8÷1/2=8;追问:8是怎样算出来的?学生再次从计算的角度去思考:当两个分数的分母相同时,只需要用被除数的分子除以除数的分子就能求出商。

由于通分法计算遵从了学生的认知水平,易于被学生尤其是学困生理解,而倒数法的意义很难被学生理解,但它简洁的计算过程又是今后学习不可或缺的。所以在教学中我把两种计算方法同时渗透,力求使让通分法成为理解倒数法的基石。

这个教学过程完成了教学目标中的“让学生经历猜测、验证和归纳的过程,利用数形结合的方式,体会“转化”的数学思维方法。”

3、大量练习,使用计算方法。

数学的归纳过程不是把一个单一的数学现象,而是把一系列有相同特点的数学现象抽象成具有代表意义的符号特征,这就是建模过程。

为了让学生能充分感知一个数除以分数的计算过程,我先出示了两道变式题:每个小朋友吃1/3张、1/4张饼,可分给几个小朋友吃?让学生模仿前面的例题进行实际操作,独立完成计算,教师巡视中加强学困生的辅导。

由于前面几个除数的分子都是1,学生还不会去有意识地总结计算方法,仍会去想:只要看看一张饼里有几个这个分数,然后再用4去乘个数就行了。所以此时让学生归纳倒数法计算的方法还为时过早,为了使学生摆脱这种思维的束缚,真正从倒数的角度去观察和体会除数的变化,我又引进了变式题:每个小朋友吃2/3张饼,可分给几个小朋友吃?

这时学生通过画图不再能看出一张饼可以分给几个小朋友吃了,引起学生认知经验的冲突。教师要求学生以合作的形式根据黑板上的板书去解答,并说一说:你是怎样思考的?由于倒数法计算很难说清算理,反馈时学生大多会借用通分法来说明:4÷2/3=12/3÷2/3=6。根据教学目标对通分法运用的定位(是为了使学生相信倒数法计算结果是正确的。),此时一定要让学生再次进行尝试:你们能用倒数法进行计算吗?边计算边观察:什么在变?什么不变?让学生独立计算,如果他们把被除数变成了倒数,肯定与通分法计算的结果不同,这时会自行修正,并体会老师提出的问题:什么在变?什么不变?

接着出示书中“画一画”的练习,以同桌合作的方式,再次让学生体会借用图形来理解计算的优势,认识数形结合对数学解题的帮助,从而完成这三个教学目标。

在大量计算的基础上,引导学生观察这些算式,然后用自己的话归纳出一个数除以分数的计算方法。

4、观察比较,选择计算方法。

让学生观察用通分法与倒数法的计算过程,体会倒数法在计算中简洁优美。但让学生体会:如果觉得通分法更适合,也可以使用通分法进行计算。

《数学课程标准》提倡让不同的人在数学上得到不同的发展,对于数学认知水平较低的学生,允许他选择并不优化的方法,等知识水平有了进步再来运用其他更有利的方法进行学习。

5、归纳总结,完善计算法则。

通过前面多次的.叙述和大量的计算,计算法则已是呼之欲出了,但学生的语言不够简洁扼要。这时我提出:看谁说的计算方法与数学家说的方法最接近?并说出前一部分:“一个数除以分数等于——”。让学生接着完成后面的部分。最后出示书中的计算方法,并对学生的归纳总结提出鼓励性评价——太棒了,你们大多数都有数学家的天份。

五、说板书:

板书内容较多,从学生的猜测到验证过程,一步步引导学生体会数学的学习方法,为学生选择自己喜欢的计算方法提供了直观可靠的依据。

分数除法二教学设计2

教学目标:

1、理解分数除以整数的意义,掌握分数除以整数的计算方法,并能正确计算。

2、通过实践活动和自主探究,培养学生动手能力及发现问题、解决问题的能力。

3、通过一系列“自主探究----得出结论”的过程,体验其中的成就感,增强学生学习数学的自信心。

教学重点:

理解分数除法的意义,掌握分数除以整数的计算方法。

教学难点:

分数除以整数计算法则的推导过程。

教学准备:

多媒体课件、长方形纸等。

教学过程:

一、旧知复习,蕴伏铺垫

复习时我安排了两道练习,引发学生记忆的再现,为学生选择原有知识中的有效的信息做好铺垫。

1、展示问题:

(1)什么是倒数?

(2)你能举出几对倒数的例子吗?

(3)如何求一个数的倒数?

2、展示多媒体:笑笑和淘气去买白糖。

问题1:他们每人买了两袋白糖,一共买了多少袋白糖?

问题2:这些白糖一共重2千克,每袋白糖有多重?

问题3:如果笑笑家15天吃完一袋白糖,那么平均每天吃多少千克?

二、创设情境,理解意义

展示多媒体:把一张纸的4/7平均分成2份,每份是这张纸的几分之几?

1、利用准备好的纸,先把纸平均分成7份,再涂出其中的4份,然后再将这4份平均分成2份,将其中1份涂色,最后看看涂上色的这部分占整张纸的几分之几。

2、汇报

三、大胆猜想

学生通过操作,明白2/7是怎样得到的。那么到底应该怎样计算分数除法呢?让学生大胆猜想分数除法的计算方法。学生根据刚才的推理,很容易得出“分母不变,被除数的分子除以整数得到商的分子”的计算方法。

四、再次探究

1、学生很快发现有些算式是无法用以上结论计算出来的,如4/7÷3,分子4除以3是除不尽的。

2、让学生动手分一分、涂一涂,然后再让他们进行小组交流。

3、得出分数除法的计算方法:除以一个整数(零除外)等于乘这个整数的倒数。

除以一个整数(零除外)等于乘这个整数的倒数。

《分数与除法》教案篇14

教学内容:

教学目标:

1、使学生理解、掌握分数与除法的关系,并能用分数表示两个整数相除的商。

2、运用分数与除法的关系,探索假分数与带分数的互化方法。

3、培养学生动手操作、观察、比较和归纳的能力。

4、培养学生团结合作、关心他人、先人后己等优良品质。

教学重点:理解、掌握分数与除法的关系。

教学难点:理解分数商a/b(b≠0)的意义。

教学具准备:教学课件及3张完全相同的圆和剪刀。

教学过程:

一、设置疑问,揭示课题

1、请同学们计算下面各题,你能把商分为哪几类?

36÷6=64÷5=0。880÷5=16

3÷7=5÷10=0。54÷9=

然后引导学生归纳分类:

36÷6=6和80÷5=16的'商为整数;

4÷5=0。8和5÷10=0。5的商为有限小数;

3÷7=和4÷9=的商为循环小数。

2、师指出:两个自然数相除,不能整除的时候,它们的商可以用分数来表示。今天我们就来学习这部分内容:分数与除法(板书:分数与除法)

二、创设情境,引导探索

1、创设情境,引入关系

师:“六一”儿童节就要到了,今年的儿童节,学校要组织全校师生开展野游活动,到了野外,还要以班级为单位开展联欢活动,前几天我同班主任刘老师对想

要买的食品做了一些粗略的计划,知道买哪些东西了,具体怎么分还没有计算,

大家愿意和老师一起做一下详细的计划吗?

生:愿意!

师:好!那我们大家就一起来吧!

师:请看我们班级为这次活动准备的食品:

食品名称食品数量班级人数平均每人分的数量

苹果40个4740÷47

饮料39瓶4739÷47

花生8千克478÷47

上面表格里的商都不能用整数的商来表示,除了可以用小数来表示,能否用

其它的形式,比如分数来表示呢?等我们学完了这节课,同学们自然会找到答案的。

2、层层深入,感知关系

师:我想调查一下,最近谁要过生日?指一名同学说说你过生日的时候必须要买什么食品?(生:蛋糕)买了蛋糕是自己吃,还是同爸爸妈妈一起吃?

师:同学们愿意帮xx同学分一分蛋糕吗?

生:愿意!

师:出示例题:把一个蛋糕平均分给3个人,平均每人能分得多少?师:这时,应该把什么看作单位“1”?

要把蛋糕平均分成几份?

怎样列式?(指名口述算式)

1÷3=

师:大家拿出练习本来计算这个商是多少?(用小数表示)

生:0。333…或

课件显示:1÷3=0。333…或

师:这个商用小数表示太麻烦了,能不能用分数来表示呢?

请大家看大屏幕大家看,每人得到这个蛋糕的几分之几?

生:

师:对了!那么上面的算式1÷3的商可以用分数表示了,

即:1÷3=(个)

(2)现在小组讨论:1÷3=中,你发现整数除法中被除数和除数与得数中的分子、分母存在着什么样的关系?

(3)讨论完毕后,指几名同学代表自己的小组总结:学生口述的过程中,教师

出示课件:被除数÷除数=

(4)师:现在大家会用分数表示整数除法的商了,那么,大家能把前面表格中的得数用分数表示吗?

生:会!

师出示:40÷47=?39÷47=?8÷47=?

3、巩固关系

师:“六一”联欢的时候,我打算买3张非常好吃的比萨饼,想和班主任刘老师、还有两名在这学期进步最大的同学A和B共同分享,大家能帮我们合理的分一下吗?

生:想!

师:大家看问题:我想把这3张饼平均分给我们4个人,每人分得这3张饼的几分之几呢?

①议一议:讨论如何分,有哪些分法?(让同学们充分考虑好后,说说自己的想法)

②剪一剪:想好后各小组可以行动了,请同学们以小组为单位拿出我们事先准备的三个完全一样的圆形和剪刀剪一剪,并把分好的四份摆在桌子上。

③拼一拼:分好后,请同学们每人取一份拼在一起,看看是一个“饼”的几分之几?

④列一列:怎样用算式表示自己分饼的数量关系?谁会列式?

⑤算一算:师指一名同学板演算式:3÷4=(张)

答:每人分得张。