北师大版六年级下册数学《圆柱的体积》教案(精选17篇)

发布时间:

北师大版六年级下册数学《圆柱的体积》教案(精选17篇)

北师大版六年级下册数学《圆柱的体积》教案篇1

教学内容:本内容是六年级下册第8页至第9页。

教材分析:

本节内容是在学生了解了圆柱体的特征,掌握了圆柱表面积的计算方法基础上进行教学的,是几何知识的综合运用,为后面学习圆锥的体积打下基础,教材重视类比,转化思想的渗透,引导学生经历“类比猜想——验证说明”的探索过程,掌握圆柱体积的计算方法。

学生分析:

学生已掌握了长方体和正方体体积的计算方法以及圆的面积计算公式的推导过程,在圆柱的体积这节课化的体现动手实践,自主探索,合作交流,为突破重、难点。本节课在教法和学法上从以下几方面着手:先利用教具通过直观教学让学生观察,比较,动手操作,经历知识产生的过程,发展学生思维能力;让学生通过“类比猜想——验证说明”的探索过程,主动学习,掌握知识形成技能,合作探究学习成为课堂的主要学习方式。

学习目标:

1、使学生理解和掌握圆柱体积的计算方法,在推导圆柱体积计算公式的过程中培养学生初步的空间观念和动手操作的技能。

2、使学生能够通过观察,大胆猜想和验证获得新知识在教学活动过程中发展学生的推理能力,渗透转化思想。

3、引导学生积极参与数学学习活动,培养学生的数学意识和合作意识。

教学过程:

出示教学情境:一个杯子能装多少水呢?

想一想:杯子里的水是什么形状?准备用什么方法来计算水的体积?

让学生讨论得出:把杯子里的水倒入长方体或正方体容器,只要量出相关数据,就能求出水的体积;倒入量筒里直接得到水的体积。

(设计意图:让学生根据自己已有的知识经验,把圆柱形杯子里的水倒入长方体或正方体容器,使形状转化成自己熟悉的长方体或正方体,只要求出长方体或正方体的体积就知道水的体积。)

出示第二情境:圆柱形的木柱子的体积是多少?用这种方法还行吗?怎么办?

(设计意图:创设问题情境,引起学生认知冲突,激起学生求知欲望,使学生带着积极的思维参与到学习中去,从而产生认知的飞跃。)

探究新知:怎样计算圆柱的体积?(板书课题:计算圆柱的体积)

大胆猜想:你觉得圆柱体积的大小和什么有关?圆柱的体积可能等于什么?(说说猜想依据)

长方体,正方体的体积都等于“底面积×高”猜想圆柱的体积也可能等于“底面积×高”。

(设计意图:在新知识的探索中,合理的猜测能为探索问题,解决问题的思维方向起到导航和推进作用。)

验证:能否将圆柱转化为学过的立体图形?

让学生利用学具动手操作来推导圆柱体积公式(小组合作探究:给学生提供充分的时间和空间),引导学生把圆柱体底面平均分成多个小扇形,沿着高切开,拼成一个近似的长方体。

思考:圆柱体转化成长方体为什么是近似的长方体?怎样才能使转化的立体图形更接近长方体?

(设计意图:让学生明确圆柱体的底面平均分成的扇形越多拼成的立体图形就越接近于长方体,渗透“极限”的思想。)

用课件展示切拼过程,让学生观察等分的份数越多越接近长方体,弥补直观操作等分的份数太多不易操作的缺陷。

学生讨论交流:

1、把圆柱拼成长方体后,什么变了,什么没变?

2、拼成的长方体与圆柱之间有什么联系?

3、通过观察得到什么结论?

得到:圆柱的体积=底面积×高

V=Sh=πr2h

(设计意图:在数学活动中通过观察比较培养学生抽象概括能力,及逻辑思维能力。)

练习设计:

1、计算下面各圆柱的体积。

(1)S=60cm2h=4cm(2)r=1cmh=5cm(3)d=6cmh=10cm

2、算一算:已知一根柱子的底面半径为0.4米,高为5米,你能算出它的体积吗?

(设计意图:使学生达到举一反三的效果,从而训练学生的技能,灵活掌握本课重点。)

2、试一试:

(1)一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,这个桶的容积是多少升?

(2)一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?

(设计意图:运用圆柱的体积计算公式解决生活实际问题,切实体验到数学源于生活,身边处处是数学。)4、拓展练习:

(1)填表:

填表后观察:你发现了什么?先独立思考,再小组交流,最后汇报。

(设计意图:在教学时应找出知识间存在着的密切联系,帮助学生建立一个较为完整的知识系统,为以后“比例”的教学作了孕伏)

(2)一个柱形容器的底面直径是10厘米,把一块铁块放入这个容器后,水面上升2厘米,这块铁块的体积是多少?

(设计意图:体会测量不规则物体体积的方法,认识到数学的价值体验,使学生的思维处于积极的状态,培养学生思维灵活性,提高学生创造性解决问题的能力。)

课堂小结:谈谈这节课你有哪些收获?

(设计意图:采用提问式小结,让学生畅谈本节课的收获,包括知识,能力,方法,情感等,通过对本节课所学知识的总结与回顾,培养学生的归纳概括能力,使学生学到的知识系统化,完整化。)

教学反思:

本节课采用新的教学理念,创设情境导入渗透转化思想,让学生在兴趣盎然中径历自主探究,独立思考、合作交流从而获得新知。

情境导入渗透转化思想激发学生的学习欲望,课的开始让学生想方法测量出圆柱形水杯中水的体积,学生想出把水倒入长方体容器中转化成长方体的体积来计算出水的体积,初步引导学生把圆柱体的体积转化为长方体的体积。教会学生数学方法,注重让学生在操作中探究,动手操作能展示学生个体的实践活动,在动手过程中易于激发兴趣,积累知识,发展思维,利于每一位学生自主,独立,创造性的学习知识,发展他们的能力,课中让学生经历知识产生的过程,理解和掌握数学基础知识,让学生在体验和探索过程中不断积累知识,逐步发展其空间观念,促进学生的思维发展。

北师大版六年级下册数学《圆柱的体积》教案篇2

设计说明

1.创设问题情境,激发学习兴趣。

兴趣是最好的老师。新课伊始,为学生创设“圆柱形橡皮泥的体积你会求吗?”的`问题情境,引导学生经过思考、讨论、交流,找到解决的方法。这样的设计不仅自然渗透了圆柱(新问题)和长方体(已知)的知识联系,还让学生体会到可以有许多方法去解决生活中的实际问题,激发了学生的学习兴趣和探究新知的欲望。

2.实践操作,促进知识迁移。

知识和经验的积累来源于大量的实践活动。动手操作不但能使学生获得感性的体验,更能加深学生对知识的理解。本设计为学生创设动手操作的情境,使学生通过动手拼摆,充分感知图形之间的关系,深刻理解圆柱的体积公式的合理性,充分认识到图形转化过程中形变而质不变的辩证关系,使学生在把旧知迁移、发展、转化、构建为新知的同时,动手操作、观察及归纳能力也得到极大的提高。

课前准备

教师准备圆柱的体积公式演示教具多媒体课件

学生准备圆柱的体积公式演示学具

教学过程

第1课时圆柱的体积(1)

⊙创设情境,导入新课

1.出示一块圆柱形橡皮泥。

师:同学们,我们以前学过长方体和正方体体积的计算方法,现在我想知道这块圆柱形橡皮泥的体积是多少,你有好的办法吗?

2.学生小组讨论交流并汇报。

预设

生1:可以把这块橡皮泥捏成长方体,利用长方体的体积公式来解决。

生2:可以把它放到量杯中,计算上升的水的体积。

3.引入新课。

解决生活中的问题有很多方法,需要我们去发现、去探究。这节课我们就共同去探究圆柱体积的计算方法。

设计意图:通过创设问题情境,引发学生思考,进一步体会“转化”思想。

⊙新知探究

1.利用知识的迁移,猜想圆柱体积的计算方法。

(1)提出猜想。

师:在刚才的问题中同学们提出可以将圆柱形橡皮泥捏成长方体,这时会有什么变化?

(形状变了,体积没变)

师:我们已经掌握了长方体、正方体的体积计算方法,大家猜一猜:圆柱体积可能等于底面积×高吗?

(2)学生讨论、交流。

2.探究算法。

(1)提出问题:能不能借鉴把圆转化为长方形的方法,把手中的圆柱形学具转化为长方体?

(2)动手操作:把圆柱转化为长方体。

(3)汇报交流:介绍自己的转化方法。

(结合学生回答,课件演示转化过程:先沿圆柱底面的半径把圆柱平均分成16份,然后拼成一个近似的长方体)

(4)引导学生明确:由于我们分得不够细,所以看起来还不太像长方体;分得越多,拼成的立体图形就越接近长方体。(课件演示将圆柱分成更多等份并拼成一个近似的长方体的过程)

(5)汇报发现。

①拼成的长方体的体积与圆柱的体积有什么关系?

②长方体的底面积、高分别与圆柱的底面积、高有什么关系?

③长方体的体积等于什么?圆柱呢?

3.总结公式。

(1)圆柱的体积怎样计算?为什么?

(圆柱通过分割、拼组,可以转化成近似的长方体。这个近似的长方体的底面积与圆柱的底面积相等,高与圆柱的高相等。因为长方体的体积等于底面积乘高,所以圆柱的体积=底面积×高)

(2)说一说,怎样用字母表示圆柱的体积公式?

(学生反馈:V=Sh)

(3)如果已知d、r、C和h,怎样求圆柱的体积?

求圆柱体积的直接条件是S、h,间接条件是d、r和C,所以圆柱的体积公式也可以表示为V=πr2h、V=πh、V=πh。

(4)圆柱和长方体、正方体一样,都是直柱体,你能总结出求它们的体积的统一计算方法吗?

(直柱体的体积都等于底面积×高)

北师大版六年级下册数学《圆柱的体积》教案篇3

评价样题:

学习流程:

一、创设现实情境,增强探究欲望。

1、出示橡皮泥做的圆柱体:怎样求出这个圆柱体橡皮泥的体积?你能想出几种办法?

如果要求(出示百家姓广场上的圆柱形大鼎底座图片)圆柱形大鼎底座的体积,还能用刚才那样的方法吗?那怎么办?(学生试说出自己的办法。)

看起来前面这些方法虽然可行,但有一定的局限性,我们必须找到一个解决任意圆柱体积的方法才行,对吗?今天,就让我们来共同研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)

二、亲历建构过程,提高探索能力。

1、提出问题,大胆猜想

你能猜一猜圆柱的体积怎样计算吗?你觉得圆柱体积的大小和什么有关?

(鼓励学生大胆猜测,说出自己的想法)

2、回顾旧知,帮助迁移

同学们都很会大胆猜想,但还要小心地论证猜想的科学性。你还记得圆面积转化什么图形的面积来求它的公式的吗?

(演示课件:圆转化成长方形)

3、引发思考:我们能否把圆柱体也转化成学过的立体图形来计算它的体积呢?如果能,猜一猜能转化成哪种立体图形?

4、小组合作,验证猜想

下面请大家四人一组,借助手中的学具或用萝卜和土豆做成的圆柱分组进行探讨。

(出示合作提纲)小组长做好分工,并完成记录表。

活动记录表

思考:

1、圆柱体可以转化成哪种立体图形?

2、两种立体图形之间有怎样的联系?你们发现了什么?得出了什么结论?

3、怎样用简捷的形式表示你推导出来的公式呢?

活动过程:

1、我们用方法,把圆柱体转化成了体。

2、在这个转化的过程中,变了,没有变。

3、通过观察比较,我们发现:把一个圆柱体的底面分成许多相等的扇形,然后切、拼,就能得到一个近似的长方体。这个长方体的底面积等于圆柱体的,高就是圆柱体的。因为,长方体体积=,所以,圆柱体的体积计算公式是v=。

5、全班交流,展示评价。

评价交流中,借助评价样题。同时课件演示切拼的'过程,同时演示将圆柱底面等分成32份、64份……,让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。6、根据学生的发现引导学生推导出:

圆柱的体积=底面积×高,

用字母表示v=sh。

7、反馈练习。

(1)要求圆柱体积,必须知道哪些条件?

(2)出示例5,学生借助圆柱体积公式自主完成,并及时订正反馈。

圆柱的体积教学设计相关内容:用转化的策略解决分数问题“长方体和正方体的表面积”的教学实录小学数学《倒数的认识》教案北师大版6年级数学第11册第1单元《圆的认识》教案1、分数四则混合运算《按比例分配》课后反思百分数的意义和读写法反思百分数(三)用百分数解决问题查看更多>>小学六年级数学教案

北师大版六年级下册数学《圆柱的体积》教案篇4

圆柱的体积

教学内容:p19-20页例5、例6及补充例题,完成“做一做”及练习三第1~4题。

教学目标:

1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。

2、初步学会用转化的数学思想和方法,解决实际问题的能力

1、渗透转化思想,培养学生的自主探索意识。

教学重点:掌握圆柱体积的计算公式。

教学难点:圆柱体积的计算公式的推导。

教学过程:

一、复习

1、长方体的体积公式是什么?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)

2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。

3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

二、新课

1、圆柱体积计算公式的推导。

(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——课件演示)

(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)

(3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,v=sh)

2、教学补充例题

(1)出示补充例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?

(2)指名学生分别回答下面的问题:

①这道题已知什么?求什么?

②能不能根据公式直接计算?

③计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)

(3)出示下面几种解答方案,让学生判断哪个是正确的.

①v=sh

50×2.1=105(立方厘米)

答:它的体积是105立方厘米。

②2.1米=210厘米

v=sh

50×210=10500(立方厘米)

答:它的体积是10500立方厘米。

③50平方厘米=0.5平方米

v=sh

0.5×2.1=1.05(立方米)

答:它的体积是1.05立方米。

④50平方厘米=0.005平方米

v=sh

0.005×2.1=0.0105(立方米)

答:它的体积是0.0105立方米。

先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单.对不正确的第①、③种解答要说说错在什么地方.

(4)做第20页的“做一做”。

学生独立做在练习本上,做完后集体订正.

3、引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?(v=πr2h)

4、教学例6

(1)出示例5,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?(应先知道杯子的容积)

(2)学生尝试完成例6。

①杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)

②杯子的容积:50.24×10=502.4(cm3)=502.4(ml)

5、比较一下补充例题、例6有哪些相同的地方和不同的地方?(相同的是都要用圆柱的体积计算公式进行计算;不同的是补充例题已给出底面积,可直接应用公式计算;例6只知道底面直径,要先求底面积,再求体积.)

三、巩固练习

1、做第21页练习三的第1题.

2、练习三的第2题.

这两道题分别是已知底面半径(或直径)和高,求圆柱体积的习题.要求学生审题后,知道要先求出底面积,再求圆柱的体积。

四、布置作业

练习三第3、4题。

板书:

圆柱的体积=底面积×高v=sh或v=πr2h

例6:①杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)

②杯子的容积:50.24×10=502.4(cm3)=502.4(ml)

北师大版六年级下册数学《圆柱的体积》教案篇5

[教学过程]

一、创设情境设疑导入

1、复习铺垫。

(1)求各园的面积:

a、半径3厘米b、直径为4厘米c、周长为62.8厘米

(2)什么叫体积?长方体的体积怎样计算?

2、导入新课。

1、出示(光盘资源)几组圆柱体实物图(同底等高、同底不等高、等高不等底),引导学生观察比较它们体积的大小。

激趣后让学生思考讨论:怎样计算圆柱的体积呢?能不能把圆柱也转化成我们已经学过的图形来求出它的体积?

2、指名说说自己想法。教师引入:这节课我们就来研究如何将圆柱转化成我们已经学过的图形来求出它的体积。(板书课题:圆柱的体积)

二、自主探究学习新知

(一)探究推导圆柱的体积计算公式

1、教师演示(远程资源动画演示“圆柱体的体积”):

(1)屏幕上呈现一个圆柱体变为一个长方体(圆柱与长方体等底等高)的动画。提问:变化过程中,圆柱的什么变了(截面)?什么没有变(高、体积)?

(2)将圆柱的底面、长方体的底面闪烁后移出来。提问:你学过将圆变成长方形吗?

(3)再次出示圆柱形物体,动画演示圆柱拼成近似长方体。让学生取出圆柱体学具拼成近似长方体。

2、学生利用学具独立操作(教师巡视、指导操作有困难的学生),思考并讨论。

(1)圆柱体切开后可以拼成一个什么图形?(近似的长方体)

(2)通过刚才的实验你发现了什么?①拼成的近似长方体的体积与原来的圆柱体积有什么关系?②拼成的近似长方体的底面积与原来圆柱的底面积有何关系?③拼成的近似长方体的高与原来的圆柱的高有什么关系?(3)学生汇报交流。

3、让学生根据圆的面积公式推导过程,进行猜想。

如果把圆柱的底面平均分成32份或更多,拼成的长方体形状怎样?平均分成的份数越多,拼成的长方体形状会怎样?

4、推导圆柱的体积公式(利用远程资源动画演示推导过程)

(1)学生分组讨论、汇报:圆柱体的体积怎样计算?

(2)用字母表示圆柱的体积公式。学生口述后,教师板书。

因为长方体的体积=底面积高

↓↓↓

所以圆柱的体积=底面积高

↓↓↓

v=sh

5、引导学生进一步讨论后交流。

(1)要求圆柱的体积必须知道哪些条件?

(2)如果分别知道圆柱的底面半径、底面直径、底面周长,又怎样求圆柱的体积?

(二)、练一练

1、学生完成20页的[做一做]。

2、让学生想一想:如果已知圆柱底面的半径r和高h,怎样求圆柱的体积?(请学生自学并填写第44页第一自然段的空白部分)

(三)教学例6

1、引导学生默读题目,看题目告诉了什么条件?要求什么?想一想你将如何计算?

2、指名说解题思路,讨论并归纳解题方法。

3、学生独立按讨论的方法完成例6。

4、教师评讲、总结方法。

三、练习巩固应用拓展

(一)巩固练习

1、完成第21页的“练习三”第1、2题。(指名板演,其余同学在作业本上练习,完成后及时反馈练习中出现的错误,及时加以评讲。)

2、学生判断。

(1)长方体、正方体、圆柱体的体积都可以用底面积乘高的方法来计算。()

(2)圆柱体的底面积和体积成正比例。()

(3)圆柱的体积和容积实际是一样的。()

(二)、拓展训练(课件出示拓展延伸题,学生课外练习)

一个圆柱形量桶,底面半径是5厘米,把一块铁块从这个量桶里取出后,水面下降3厘米,这块铁块的体积是多少?

北师大版六年级下册数学《圆柱的体积》教案篇6

学习目标

1.使学生理解和掌握圆柱的体积计算公式,并能根据题里的条件正确地求出圆柱的体积。

2.培养学生初步的空间观念和思维能力;让学生认识“转化”的思考方法。

学习重点理解和掌握圆柱的体积计算公式

学习难点圆柱体积计算公式的推导。

一、温故知新

1、什么是体积?()2.长方体的体积=()字母公式:

或长方体的体积=()字母公式:

3、圆的面积=()字母公式:

4.圆是把圆面积转化成近似的长方形面积进行计算的。圆的面积是怎样推倒得来的?

圆分割成若干等分,拼成近似的长方形,它的长等于圆的(),长方形的等于圆的(),长方形的面积等于(),所以圆的面积等于()。

二、自主学习

1.计算圆的面积时,是把圆面积转化成我们学过的长方形进行计算的,能不能把圆柱转化成我们学过的立体图形来计算它的体积?

2、把圆柱的底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?()

3、思考:1)通过实验你发现了什么?

*拼成的近似长方体()没变,()变了。

*拼成的近似长方体和圆柱相比,底面形状变了,由圆变成了近似(),()的大小没有改变。

*近似长方形的高就是圆柱的().

2)推导圆柱体积公式。怎样计算圆柱的体积?

长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的(),高就是圆柱的(),所以圆柱的体积也可以用()乘()来计算。

用字母表示:()

4补充例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?

①已知()求()

②能不能根据公式直接计算?()因为()

③计算之前要注意什么?

计算时既要分析题目中的(),还要注意先统一()。

④解出此题,代公式计算。

3、完成第20页的“做一做”。

4、思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?______________

5、自学p20例6,,

6、比较一下补充例题与例6有哪些相同的地方和不同的地方?

7、做书上21页1题。

北师大版六年级下册数学《圆柱的体积》教案篇7

教学目标:

1、了解圆柱体体积(包括容积)的含义,进一步理解体积和容积的含义。

2、经历探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

3、培养初步的空间观念和思维能力;进一步认识“转化”的思考方法。

教学重点:

理解和掌握圆柱的体积计算公式,会求圆柱的体积

教学难点:

理解圆柱体积计算公式的推导过程。

教学用具:

圆柱体积演示教具。

教学过程:

一、复述回顾,导入新课

以2人小组回顾下列内容:(要求1题组员给组长说,组长补充。2题同桌互说。说完后坐好。)

1、说一说:(1)什么叫体积?常用的体积单位有哪些?

(2)长方体、正方体的体积怎样计算?如何用字母表示?

长方体、正方体的体积=()×()用字母表示()

2、求下面各圆的面积(只说出解题思路,不计算。)

(1)r=1厘米;(2)d=4分米;(3)C=6.28米。

(二)揭示课题

你想知道课本第8页左上方“柱子的体积”吗?你想知道“一个圆柱形杯子能装多少水”吗?今天就来学习“圆柱的体积”。(板书课题)

二、设问导读

请仔细阅读课本第8-9页的内容,完成下面问题

(一)以小组合作完成1、2题。

1、猜一猜,圆柱的体积可能等于()×()

2、我们在学习圆的面积计算公式时,指出:把一个圆分成若干等份,可以拼成一个近似的长方形。这个长方形的面积就是圆的面积。圆柱的底面也可以像上面说的那样转化成一个近似的长方形,通过切、拼的方法,把圆柱转化为一个近似的长方体(如课本第8页右下图所示)。(用自己手中的学具进行切、拼)观察拼成的长方体与原来的圆柱之间的关系

(1)圆柱的底面积变成了长方体的()。

(2)圆柱的高变成了长方体的()。

(3)圆柱转化成长方体后,体积没变。因为长方体的体积=()×(),所以圆柱的体积=()×()。如果用字母V代表圆柱的体积,S代表底面积,h代表高,那么圆柱的体积公式可用字母表示为()

[汇报交流,教师用教具演示讲解2题]

(二)独立完成3、4题。

3、如果已知课本第8页左上方柱子的底面半径为0.4米,高5米,怎样计算柱子的体积?

先求底面积,列式计算()

再求体积,列式计算()

综合算式()

4、要想知道“一个圆柱形杯子能装多少水?”可以用杯子的“()×()”(杯子厚度忽略不计)

【要求:完成之后以小组互查,有争议之处四人大组讨论。】

教师根据学生做题情况挑选一些小组进行汇报、交流,并对小组学习情况进行评价。

三、自我检测

1、课本9页试一试

2、课本9页练一练1题(只列式,不计算)

【要求:完成后小组互查,教师评价】

四、巩固练习

课本练一练的2、3、4题

【要求:组长先给组员讲解题思路,然后小组内共同完成】

教师进行错例分析。

五、拓展练习

1、课本练一练的5题

2、有一条围粮的席子,长6.28米,宽2.5米,把它围成一个筒状的粮食囤,怎样围盛的粮食多?最多能盛多少立方米的粮食?

【要求:先组内讨论确定解题思路,再完成】

六、课堂总结,布置作业

1、总结:这节我们利用转化的方法,把圆柱转化为长方体来推导其体积公式,切记用“底面积×高”来求圆柱的体积。

2、作业:课本练一练6题

北师大版六年级下册数学《圆柱的体积》教案篇8

【学习目标】

1、探索并掌握圆柱的体积计算公式。

2、能运用公式计算圆柱的体积,并解决实际问题。

【学习过程】

一、板书课题

师:同学们,今天我们来学习“圆柱的体积”(板书课题)。

二、出示目标

本节课我们的目标是:(出示)

1、探索并掌握圆柱的体积计算公式。

2、能运用公式计算圆柱的体积,并解决实际问题。

了达到目标,下面请大家认真地看书。

三、出示自学指导

认真看课本第19页到第20页的例5和例6的内容,重点看圆柱体积公式的推导过程和例6解题过程,想:

1、圆柱的体积公式是如何推导出来的?

2、圆柱的体积计算公式是什么?用字母如何表示?

5分钟后,比谁能做对检测题!

师:认真看书自学,比谁自学的最认真,自学效果最好。下面自学竞赛开始。

四、先学

(一)看书

学生认真看书,教师巡视,督促人人都在认真地看书。

(二)检测(找两名学生板演,其余生写在练习本上)

第20页“做一做”和第21页第5题。

要求:1、认真观察,正确书写,每一步都要写出来。

2、写完的同学认真检查。

五、后教

(一)更正

师:写完的同学请举手。下面,请大家一起看黑板上这些题,发现问题的同学请举手。(由差-中-好)

(二)讨论

1、看第1题:认为算式列对的请举手?

【圆柱的体积=底面积高】

2、看第2题:认为算式列对的举手?你是怎么思考的?

3、看计算过程和结果,认为对的举手?

4、评正确率、板书,并让学生同桌对改。

今天你们表现实在是太好了,老师真为你们感到高兴。老师这里有几道练习题,敢不敢来试一试?(出示)

六、补充练习:

1、一个圆柱形钢材,底面积是30立方厘米,高是60厘米,体积是多少立方厘米?

2、一个圆柱体和一个长方形的体积相等,高也相等,那么它们的底面积。

3、把一个圆柱的侧面展开,得到一个正方形,圆柱的底面半径是5厘米,这个圆柱的高是厘米,体积是立方厘米。.

下面,我们就来运用今天所学的知识来做作业,比谁的课堂作业能做得又对又快,字体还又端正。

七、当堂训练(课本练习三,第21页)

作业:第3、4、7、8题写作业本上

练习:第1题写书上,第2、6、9、10题写练习本上

八、板书设计

课题三:圆柱的体积

圆柱的体积=底面积高

课后反思:

本节课的教学内容是九年义务教育六年级下册的《圆柱的体积》,我教此内容时,不按传统的教学方法,而是采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:

一、学生学到了有价值的知识。

学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。

二、培养了学生的科学精神和方法。

新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。

三、促进了学生的思维发展。

传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。

本节课采用新的教学方法,取得了较好的教学效果,不足之处是:由于学生自由讨论、实践和思考的时间较多,练习的时间较少。

北师大版六年级下册数学《圆柱的体积》教案篇9

教学目标:让学生在了解圆柱的基础上,通过联想迁移、观察演示等活动推导出圆柱体积的计算公式,并能正确应用公式进行相关的计算;培养学生的观察、比较、分析、综合的能力,发散思维能力以及初步的空间想象能力;向学生渗透知识间“相互转化”的辩证唯物主义思想。

教具准备:圆柱体积演示教具,多媒体课件等。

教学过程:

一、铺垫复习。

同学们,我们已经认识了圆柱,也学习了圆柱侧面积和表面积的计算,你能用简洁的语言表述一下你对圆柱的了解吗?(抽3—5人口述)

生:…………

师:刚才几位同学已经把我们对圆柱的认识、了解作了介绍。那么你们还想不想对圆柱了解更多呢?你们还想了解圆柱的那些知识呢?

生:……我们还想了解圆柱的体积如何计算?……

师:那好,今天我们就来研究圆柱的体积。板书:圆柱的体积

在学习圆柱的体积以前,请你猜一猜:圆柱的体积可以怎样计算?有没有不同的计算方法?

生:圆柱的体积=底面积高……

师:你能说一说你为什么这样想吗?

生:因为长方体和正方体的体积都用底面积乘高来计算。

师:说得好,那么究竟圆柱的体积是不是用底面积乘高来计算呢?下面我们就来研究这个问题。

不过在研究之前,先请同学们回忆一下圆的面积计算公式是怎样的?圆的面积计算公式是怎样推导出来的?

生甲:圆的面积计算公式是s=πr2,这个公式是这样推导出来的:将圆沿着直径剪成若干个扇形,然后将这些扇形重新拼成一个近似长方形的图形(分的份数越多,拼成的图形越接近于长方形),这个近似长方形的长等于圆的周长的一半即πr,宽等于圆的半径r。因为长方形的面积=长宽,所以圆的面积s=πrr=πr2。

生乙、丙:口叙圆面积推导过程。

师:好,现在我们就来研究圆柱的体积计算。

[简评]由复习原学知识作铺垫,自然引入本课时研究的内容,即融汇了新旧知识的联系,又有助于学生更好地理解本课时新知。

二、教学新课。

1、推导圆柱体积计算公式。

师(出示圆柱体教具):我这儿有一个圆柱体,我想知道这个圆柱体的体积有多大,有什么办法?

学生发表自己的意见。

师:刚才同学们发表了自己的意见,虽然各人说法不完全相同,但有一点是相同的,这就是:想办法将圆柱体转换成我们能求体积的形体(长方体)。那么怎样转换呢?

生:将圆柱体先切成若干块,然后再重新拼成长方体。

师:怎样切,怎样拼?

生:沿底面直径切开,然后再拼起来。

生:(学生多人发表意见)…………

生:沿圆柱的底面直径切开,使切面与底面垂直。这样切分成若干个底面是扇形的立体图形,再将这些切分下来的每一块重新拼在一起,就可以拼成一个近似长方体的立体图形。(学生在说的同时用教具将切、拼的过程演示给全班同学看)

师:刚才这位同学演示得很好。现在让老师再来给同学们演示一下(突出分的份数多与少对拼成的近似长方体形状的影响)。你发现了什么?

生:分的份数越多,拼成的形体越接近于长方体。

师:如果我们分成成百上千份,甚至更多,再拼起来,你想象一下它的形状会怎么样?

生:就是长方体。

师:这个圆柱体的体积和拼成的长方体的体积有什么关系?

生:相等。

师:(再用教具演示切、拼的过程,让学生注意观察)你还发现了什么?

生:圆柱的底面积等于拼成的长方体的底面积。

生:圆柱的高等于拼成的长方体的高。

(多媒体演示)将圆柱切拼成一个长方体,突出强调圆柱的底面积与长方体底面积的关系,圆柱的高与长方体高的关系以及圆柱体体积与长方体体积的关系。

引导学生口叙圆柱转化成长方体,以及其底面积、高和体积的关系。

师:谁来完整地叙述一下刚才多媒体演示的过程?

生:将圆柱体切拼成一个长方体,这个长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高,长方体的体积等于圆柱的体积。因为长方体的体积等于底面积乘高,所以圆柱的体积也等于底面积乘高。

师:如何用字母表示圆柱的体积计算公式呢?

生:用字母v表示体积,s底表示底面积,h表示高,则圆柱的体积计算公式表示为:v=s底h=s底h

(学生分组,相互口述以上转化及圆柱体积计算公式得出的过程)

(学生分组口述以后,再请学生说一说圆柱体积计算公式的推导过程)

教师板书:

圆柱体(拼成的)长方体

底面积=底面积

高=高

体积=体积

因为长方体的体积=底面积高

所以圆柱的体积=底面积高

用字母表示为:v=s底h=s底h

[简评]强化了学生的参与,放手让学生去感知、去体验;重视学生的口头表述,利于学生在知识的形成过程中掌握知识、形成技能,同时也强化了学生记忆。

2、指导学生阅读教材,进一步理解圆柱体积的计算公式。

先由学生阅读教材,教师巡视。

师:对于圆柱体的体积计算,同学们还有什么问题吗?

生:没有。

师:好,那圆柱的体积计算与那些条件有关?如果没有直接告诉圆柱的底面积,而是告诉其底面的周长(或半径、直径)以及圆柱的高,你能计算它的体积吗?如何计算?

生:根据圆柱的底面周长(或半径、直径),可以先算出圆柱的底面积,再根据圆柱的底面积和高求圆柱的体积。

生:根据圆柱的底面周长(或半径、直径),求圆柱底面积的方法是……

师:完全正确,那我们现在就来计算圆柱的体积。

[简评]充分利用教材资源,利于学生能力的形成,并加深学生对知识的理解掌握。

3、应用体积计算公式计算。

求下列各圆柱体的体积:

(1)底面积是9平方分米,高是8分米;(2)底面半径3厘米,高4厘米;

(3)底面直径8米,高3米;(4)底面周长18.84厘米,高6厘米;

(5)底面积15平方米,高30分米;(6)侧面积10平方米,底面半径5米。

以上各题的练习,一方面检查学生对圆柱体积公式的理解掌握情况,另一方面也考察学生的读题审题能力,如第(5)题涉及的计量单位换算,同时也给学生提出新的问题,如第(6)题的计算。

待多数学生进入第(6)题的计算时,抽学生6人将自己的解答板书在黑板上。

师生一同订正以上练习。

[简评]及时练习,强化学生对新知的印象,利于学生掌握新知。

4、求异探讨训练。

师:看来前5个小题的计算情况还好,绝大多数的同学能正确列式并计算正确,这很好。看来同学们对圆柱的体积计算公式的确掌握得较好。但在计算第6题时,很多人都遇到了麻烦,为什么呢?

生:因为根据侧面积和底面半径计算高非常麻烦,结果要么只能用分数表示,要么只能取近似值。

生:其实如果不算出高的具体结果,而用一个式子表示高,倒也不麻烦,但写出来的式子比较繁。

师:那么有没有简单可行的办法呢?

生:……

师:同学们可以分小组讨论一下。

(学生讨论)

师:通过讨论,你们想到了什么简单可行的办法?

生:我们从计算公式的转换上找到了圆柱体积计算的另一个公式,这就是:v=s侧r。

师:不错,那你们能不能把公式转换的过程给同学们介绍一下呢?

生:行。(该小组的同学相互补充完整)由于圆柱的体积v=s底h,而s底=πr2,所以v=πr2h=πrhr,又由于πrh=πdh=s侧,于是得到v=s侧r。

师:同学们认为刚才这个组的同学说得怎么样?

北师大版六年级下册数学《圆柱的体积》教案篇10

教学目标

1、知识与技能:通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,使学生理解圆柱的体积公式的推导过程能够运用公式正确地计算圆柱的体积。

2、过程与方法:让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究法。

3、情感态度与价值观:通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

教学重点:

掌握和运用圆柱体积计算公式进行正确计算。

教学难点:

理解圆柱体积计算公式的推导过程,体会“转化”方法的价值。

教学过程

一、情景导入:

1、教师:(出示课件)多么温馨的场面,今天是亮亮和爷爷的生日,幸福的一家人围坐在饭桌前享用着美酒佳肴,你能观察到今天的饭菜比平时多了什么吗?

学生:1、比平日多了两个蛋糕。

2、两个蛋糕一个大一个小。

3、蛋糕都是圆柱形的。

2、教师:同学们观察的很仔细,那你能根据刚学过的知识说一说爷爷蛋糕较大意味着什么吗?

学生:蛋糕大,意味着圆柱的体积大。

3、教师:那你还知道什么是圆柱的体积吗?

学生:圆柱的体积就是圆柱体占空间的大小。

4、教师:两个蛋糕的体积相差较多,我们容易比较出那个体积大,如果体积相差较小我们怎么比较呢?

学生:拿出准备的圆柱体进行比较,讨论,各小组分别说明比较的方法并展示。

教师:板书:圆柱的体积

二、课上探究

1、教师:同学们回忆一下我们还学过那些立体图形?

学生:还学过正方体和长方体。

教师:它们的体积怎样计算?(多媒体课件出示长方体)有什么共同点?

学生:长方体的体积=长×宽×高,长×宽=底面积,V=sh;正方体的体积=棱长×棱长×棱长,棱长×棱长=底面积,V=sh;共同点都是底面积乘高。

2、猜测圆柱的体积与什么有关

师:拿出圆柱体,让学生猜想圆柱体积与什么有关。

生1、圆柱的体积与圆柱的高有关。

生2、圆柱的体积与圆柱的底面积有关。

生3、圆柱的`体积与圆柱的底面周长有关。

生4、圆柱的体积与圆柱的底面半径有关。

3、推导圆柱体积公式

①师:同学们观察圆柱的底面是一个圆,学习圆面积时,我们是把圆转化成哪种图形来求面积的?

生:把圆转化成近似长方形来求面积的。

②师:我们一起来回忆把圆转化成近似长方形的过程,(课件)

师:你发现了什么?

生:我发现把圆平均分成的份数越多,拼成的图形越接近长方形。

③师:圆柱可以看成多个圆片摞在一起,把圆剪拼成的每个近似长方形也摞在一起。我们就把圆柱转化成我们以前学过的哪种立体图形呢?

生:把圆柱转化成近似的长方体。

④师用圆柱体演示转换过程,让学生说怎样转换的。

生:把圆柱平均分成16份拼成一个近似的长方体。

⑤师:为了让大家看的更清楚,我们再演示一下这个转化过程。

课件再次演示把圆柱等分16等份,拼成近似的长方体。

再出示32等份的圆柱体拼成的近似的长方体,让学生观察,发现了什么?

生:分成的份数越多,拼成的图形越接近长方体。

⑥师:课件出示圆柱体和拼成的长方体,让学生观察,拼好的长方体与原来的圆柱比较,发现了什么?

学生分组讨论,汇报:

生:长方体的高和圆柱的高相等。

生:长方体的底面积和圆柱的底面积相等。

⑦师:你是怎么想的?

生:刚才我们复习了把圆转化成长方形,所以圆柱的底面积和长方体的底面积相等。

⑧师:再次用圆柱拼成近似长方体的过程,让学生仔细观察圆转化成长方形后,面积相等。

生:长方体的长是圆柱底面周长的一半,宽是圆柱底面半径

师:课件演示长方体的体积=底面积×高

⑨师:那么圆柱的体积等于什么呢?

生:圆柱的体积=底面积×高

⑩下面我们再一起回忆一下转化的过程,(课件)

让学生独立填答案,汇报:

三、我们知道了圆柱的体积公式,下面我们就来解决一些实际问题。

四、学生谈收获:

希望上述资料能对你有所帮助,优秀的说课稿有助于教师表述具体课题的教学设想及其理论依据。

北师大版六年级下册数学《圆柱的体积》教案篇11

教学内容:

北师大版教学六年级《圆柱的体积》

教学目标:

1、结合具体的情境和实践活动,理解圆柱体体积的含义。

2、经历探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

3、培养学生初步的空间观念和思维能力;

教学重点:

理解和掌握圆柱的体积计算公式,会求圆柱的体积。

教学难点:

理解圆柱体积计算公式的推导过程。

教具准备:

圆柱体积演示教具。

教学过程:

一、旧知铺垫

1、谈话引入

最近我们认识了圆柱和圆锥,还学会了计算圆柱的表面积。现在请看老师的这个圆柱形杯子和这个圆柱比较,谁大?这里所说的大小实际是指它们的什么?(生答)

2、提出问题:什么叫体积?我们学过那些图形的体积?怎么算的?(生答师随之板书)

这节课我们就来学习圆柱的体积。

二、自主探究,解决问题

(一)认识圆柱体积的意义。

圆柱的体积到底是指什么?谁能举例说呢?

(二)圆柱体积的计算公式的推导。

1、我们学过长方体和正方体体积的计算,圆柱体的体积跟什么有关呢?你会有怎样的猜想?(小组内说说)

2、回忆圆面积的推导过程。

3、教具演示。

(1)取圆柱体模型。

(2)将圆柱体切成两半。

(3)分别将两半均分成若干小块。

(4)动手拼成一个近似的长方体。

(三)归纳公式。

(板书:圆柱的体积=底面积×高)

用字母表示:(板书:V=Sh)

三、巩固新知

1、这个杯子的底面半径为6厘米,高为16厘米,它的体积是多少?

审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。

现在这个杯子装了2/3的水,装了多少水呢?

2、完成“试一试”

3、“跳一跳”:统一直柱体的体积的计算方法。

四、课堂总结、拓展延伸

这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?这个公式适合哪些图形?他们有什么共同特点?

五、布置作业

练一练1-5题。

北师大版六年级下册数学《圆柱的体积》教案篇12

一、说教材

1、教学内容

本节课是人教版小学六年级数学课本十二册第三单元第二小节第二课时。内容包括圆柱体的体积计算公式的推导和运用公

2、教学目标

知识目标:(1)通过学生体验圆柱体体积公式的推导过程,掌握圆柱的体积公式并能应用公式解决实际问题。

(2)通过操作让学生知道知识间的相互转化。

能力目标:倡导自主学习、小组合作、动手操作的学习方式,培养学生动手操作的能力,合作交流的意识。从而建立空间观念培养学生的逻辑推理能力。

情感目标:让学生感受数学与生活的联系,体验探索数学奥秘的乐趣,培养学生学习数学的积极情感。

4、教学重点

(1)通过观察操作,使学生初步感知立体图形之间的关系,掌握圆柱体积公式的推导过程。并能应用公式解决实际问题。

(2)通过小组合作、交流,培养学生的合作意识。

5、教学难点

教学源于生活又应用于生活,但难的就是如何让学生学会用数学的眼光去发现生活中的数学问题,用数学思考和方法去分析和解决生活当中的问题。圆柱体积计算公式的推导过程比较复杂,需要用转化的方法来考虑,推导过程要有一定的逻辑思维能力,因此,我确定本课的难点是:推导圆柱体积计算公式的过程。

6、教具、学具准备:

本节课采用的教具为。(圆柱体切割组合学具,各小组自备所需演示的用具)。

四、说教学过程

(一)情境导入,激发兴趣

活动一、猜一猜

出示一个圆体的实物和一个长方体的实物,猜猜它们的体积谁大一些?

在没有学习圆柱体体积的情况下,学生会猜①圆柱体积大一些。②长方体体积大些。③一样大。④我们必须通过动手验证才能知道谁大。由此揭示课题,今天来探索圆柱体的体积。

(这一活动的设计,激发了学生的学习兴趣,使学生为了验证自己的猜想而产生了强烈的求知欲望,从而进入最佳的学习状态。)

(二)师生互动,验证猜想

北师大版六年级下册数学《圆柱的体积》教案篇13

教学目标

1、知识与技能:理解教材中形体转化的过程,掌握圆柱体积的计算公式,会用公式计算圆柱的体积,解决有关简单的实际问题。拓展教材内容,初步了解直柱体的相关知识。

2、过程与方法:利用教材空间,为学生搭建思维平台。让学生经历观察、想象、思考、交流等教学活动过程,理解圆柱体积计算公式的推导过程,提高学生思维能力,同时体验转化和极限的思想。

3、情感与态度:挖掘教材内涵,把图形的变换过程,转变为学生思维能力的培养、提高的过程,并进一步发展其空间观念,领悟学习数学的方法,激发学生学习兴趣,渗透事物是普遍联系的唯物辩证思想。

教学重点:

理解圆柱体积计算公式的推导过程,运用圆柱体积计算公式准确解决实际问题。

教学难点:

正确理解圆柱体积计算公式的推导过程。

教学过程

一、情境导入:

老师手拿一个圆柱形橡皮泥(大小适宜)。

1、师:通过前面的学习,关于圆柱你已经知道什么?还想了解它的哪些知识?

生1:(已学知识)。

生2:圆柱是一种立体图形,那么它的体积怎么计算?

【学情分析:在学习圆柱的认识和表面积的基础上,学生能够顺利回忆已学的知识,而且质疑提出即将学习的知识,明确学习目标,为本节课的学习找到思维与认知源泉。】

2、师:联系已经掌握的有关立体图形的知识,你能想办法求出这个圆柱体的体积吗?

生1:圆柱体的体积计算没有学过,无法计算。

生2:将这个圆柱放入一个盛有水的长方体容器中,量出上升了的水的长、宽、高,就可以求出它的体积。

生3:圆柱体在水中必须完全浸没,而且水还不能溢出。

【学情分析:学生在五年级学习长方体、正方体有关知识的基础上,很容易想到运用“排水法”来解决问题,所以这一环节也充分给予学生展示自我的机会,培养思维中的自信心。】教师在学生中找出小助手,帮助测量有关数据,全体同学计算水的体积,并作记载。

师:运用转化思想,联系已学知识,解决新生问题,同学们真了不起!

【设计意图:学生的学习活动要建立在已有的知识和认知基础上,通过水的变形把圆柱的体积转化为长方体的体积来计算,使学生初步感知数学转化思想在解决问题中的价值,同时提高学生解决问题能力和思维能力。】

4、师:如果要求压路机前轮的体积或是求楼房中柱子的体积,还能不能用这种方法计算吗?(不能)那么求圆柱的体积时是否也有一个简单、易算的体积计算公式呢?今天我们就一起来研究圆柱体积的计算方法。

【设计意图:学生的学习应该是出于自身需要的,是主动的、有效的,已有的知识已经不能解决新生问题时,学生产生强烈的求知欲望,为主动参与知识的形成过程,探究圆柱的体积计算公式奠定积极的情感基础。】

二、新旧过度:

教师引导学生观察圆柱形实物。

1、

师:发挥你的想象,哪些平面图形可以演变为圆柱体?生1:以长方形的一条长为轴,把长方形旋转一周,就形成一个圆柱体。

(教师演示:大小不同的长方形旋转形成圆柱体。)

生2:把一个圆形上下平移,移动过的轨迹就是圆柱体。(课件演示:大小不同的圆形上下垂直平移不同高度形成圆柱体。)

师:通过刚才的演示过程你觉得圆柱的体积大小与什么有关?(圆柱的底面积和高)

【设计意图:其一,让学生初步感知几何图形点———线———面———体的演变过程;其二,训练学生的空间思维能力,进而提升学生的数学思维含量;其三,为进一步探究圆柱的体积计算公式明确探究方向。】

2、师:圆柱的底面大小就是圆柱底面圆形的面积,叫做圆柱的底面积。谁还记得圆面积计算公式的推导过程?

学生口述,同时课件演示圆形转化为近似长方形的过程。

【设计意图:回忆圆转化为近似长方形的过程,使学生重温化曲为直、化圆为方的数学思想,而且沟通新旧知识间的联系,同时为下一步对圆柱的转化(等份切割)顺利进行提供思维方法的帮助。】

3、教师小结:我们能把一个圆采用化曲为直,化圆为方的方法转化成近似的长方形,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形呢?

三、自主探究

1、学生手拿圆柱实物,仔细观察,独立思考。

2、组织学生小组讨论,把个人的想法在小组中交流,形成统一意见。

强调:在讨论过程中,教师参与其中,倾听学生想法,调整汇报次序,同时提醒学生观察手中圆柱实物。

3、汇报交流,统一意见。

生1:把一个圆剪拼成一个近似的长方形,然后把圆形和近似长方形同时向上平移相同的高度,这时他们的轨迹一个是圆柱体,一个是近似长方体,而且它们的体积相等。

(师:一个圆柱和一个长方体只要底面积和高分别相等,它们的体积就相等吗?一会儿我们来解决这个问题。)

生2:把圆柱的底面分成许多相等的扇形,再沿这些分割线把圆柱纵切开来,从而剪拼成一个近似的长方体。

(师:为什么是近似的长方体?———渗透数学极限思想)

【设计意图:这个转化的过程是本节课的难点,在前面知识铺垫的基础上,发挥学生集体智慧的结晶,为学生提供广阔的思维和交流平台,真正使学生的思维与学习相辅相成,从而达到提高学生空间思维能力之目的。】

4、课件演示:

师:仔细观察下面这组课件,和你想象的是否一样?

演示两次,第一次把圆柱平均分成16份,再剪拼成一个近似的长方形;第二次把圆柱平均分成32份,再剪拼成一个近似的长方形。

师:如果再平均分成更多的份数,结果会怎样呢?(平均分成的份数越多,转化成的形体就越接近长方体——极限思想)【问题讨论:课件中把圆柱平均分割后,其中的一块又平均分成两份,其中的一份移接到另一端,拼成一个更接近的长方体,而教材上的意图并没有这样的过程,我认为教材的方法是很可取的,符合极限思想,并且可以给予学生充分的思考和想象空间,因为只要均分的份数无限多时,拼成的图形就是一个长方体。然而实际教学中只是把圆柱平均分成16份或32份,那么在实际教学中如何更准确的诠释实际与理论之间的这种矛盾,从而更好的服务于学生思维、服务于课堂教学呢?】

5、直观演示,寻找联系师:为了强化刚才的转化过程,我们再借助实物教具演示一遍(教具一半为红色,一半为绿色)。仔细观察演示过程,你能发现什么?

生:长方体的体积相当于圆柱的体积,长方体的底面积相当于圆柱的底面积,而且它们的高相等。

因为:长方体的体积=底面积×高

所以:圆柱的体积=底面积×高

V=Sh【学情分析:在小组讨论、课件演示的基础上,再有双色教具(一个红色教具,一个绿色教具,偶然发现双色混合更容易辅助学生找出联系)的实物演示,使得寻找圆柱体与长方体之间的联系变得异常容易,并且自然而然得到圆柱体体积计算公式,同时使学生感受获取知识的成功之喜悦、艰辛之感慨。】

四、实践应用:

1、从公式中可以看出,只要知道哪些条件就能计算圆柱的体积?口算:一个圆柱的底面积是90平方分米,高20分米,它的体积时多少?

强调单位:90×20=1800(立方分米)

2、再次拿出圆柱体橡皮泥,问:如果要用圆柱体积计算公式计算它的体积,你需要测量哪些数据?(底面直径、高)

找学生实际测量,保留整厘米数,进行计算。将计算结果与用排水法求出的体积做一对比,可能存在误差。师:为什么会产生误差呢?

生1:可能测量有误差,并且还要保留。

生2:测量水的长、宽时,容器的厚度忽略不计,也能产生误差。教师说明:每一个科学结论都必须经过反复的.实验、计算,才能得到正确的结论,我们在学习上就要有这种不怕吃苦、勇于探索的精神。

3、出示一个圆柱形玻璃杯,出示一袋液态奶(225ml),问:通过计算你能知道这个杯子能装下这袋奶吗?除水杯的厚度忽略不计外,你还需要知道哪些条件?

(教师直接给出玻璃杯的底面直径和高)

【设计意图:层次性练习设计,第一层:基本练习,使学生更好的掌握本课重点,夯实基础知识;第二层,变式练习,进一步加深学生对圆柱体积公式的理解和掌握,学会灵活运用公式,在提高学生动手操作能力的同时,培养学生的逻辑思维能力;第三层,密切联系生活,运用公式解决引入环节中的问题,使学生的思维处于积极的状态,达到培养学生思维的灵活性和创造性解决问题能力的目的。】

五、看书质疑:看书P19—20,师:哪些知识是我们没有讲到的?(V=∏r2h)结合本节课的探究过程,你有什么疑问吗?

若学生有困难就教师提出问题:长方体和圆柱体有什么相同的地方,为什么他们的体积都能用V=Sh来计算?

学生独立思考后,教师解释:我们现在所学的圆柱体是直圆柱,他与长方体都属于直柱体,只要是直柱体,体积都可以用V=Sh来计算。如三棱镜的体积=底面三角形的面积×高

【设计意图:课本是最好的教学辅助工具,是学生学习最好的伙伴,让学生再次重温本节课的学习历程,养成一种良好的学习习惯和学习品质。】

【问题讨论:我个人认为,在每一节课每个知识点的教学过程中,都尽量站在“数学”的高度来教学,于是对教材内容进行了拓展。长方体与圆柱体的体积公式V=Sh正好说明直柱体体积=底面积×高,但因为长方体(平面围成)与圆柱体(曲面围成)之间的联系较难找出,无疑增加了学生的思维负担,但从数学学习的角度来说,它却为今后“几何”学习奠定基础,这一环节处理是否有利于六年级学生思维发展?】

六、全课小结:

师:通过本节课的学习,你有什么收获?

【设计意图:收获包括知识、能力、方法、情感等全方位的体会,在这里采用体温师小结,使学生畅谈收获,发现不足,既能训练学生语言表达能力,又能培养学生的归纳概括能力,同时通过对本节所学知识的总结与回顾,还能使学生学到的知识系统化、完整化。】

启发与思考

启发

一、充实教材,为提高学生思维能力搭建平台

课堂教学中让学生在教师的启发指导下,独立思考、积极主动的去探究知识是怎样形成的,才能真正使学生成为学习的主体。在教材中已经提供了图形转化的过程,那么在没有学具让学生进行动手操作、亲自感悟的情况下,怎样让学生的思维真正参与到知识的形成过程呢?作为教师,必须充实教材。课堂中让学生动手测量计算所必需的数据,自己感悟学习圆柱体积计算公式的必要性,合作探究圆柱体的转化方法和过程。所有这些环节的设计,都在潜移默化中引导学生主动思考,主动参与,在思考与参与中提高了学生的思维能力。

二、借助教材,为提高学生思维能力寻找支点

数学知识具有一定的结构,知识间存在密切的联系,教学时要找出知识间的内在联系,帮助学生建立一个较完整的知识系统。教材中设计了引问“圆可以转化成长方形计算面积,圆柱可以转化成长方形计算体积吗?”但我认为“面体过渡”在几何领域中本身就是一个难点,而“面面互化”迁移到“体体互化”,就难上加难,所以设计中用较长时间沟通新旧知识间的联系:排水法的应用,平面图形演变为立体图形的过程,圆面积的推导过程。在复习当中,学生的综合运用能力得到提高,更重要的是为下一步学生的思维活动确立支点,进而提高学生的思维能力。

三、理解教材,为提高学生思维能力提供保证数学思想的教学才是数学课堂教学中最本质的教学。从教材的编排,还有各知识点的呈现中可以看出,有一条不变的主线贯穿始终,那就是转化思想中的化曲为直、化圆为方。那么,只要教师真正理解教材的这一编写意图,学生所收获到的就不仅是圆柱体积的计算方法,而是真正感悟到数学转化思想,学生必将运用这种思想影响今后的学习,为其思维能力得以持续发展提供保证。思考

思考

一、演示、观察能否代替操作?

教材中提供了教具演示,但在本节教学前,始终没有找到学生使用的操作学具,而自己也尝试用土豆、橡皮泥等制作学具,都因为难度太大(粘接处)而告失败,在无奈之余,设计了“独立思考———小组探究———课件演示———教具操作”四个环节来突破本节难点。就学生理解、接受方面来说效果不错。但没有让学生亲自操作,总感觉影响学生思维发展。类似教学如:圆锥高的认识。

二、研究中的失误会不会造成学生认知的“失误”?

课堂中为求真实,进行了两次实际测量(第一次测长方体中水的长宽高;第二次测圆柱形橡皮泥的底面直径和高)。两次计算结果的对比,使学生思维与课堂结构都体现完整性。但由于种种误差,计算结果很可能不会相等,这就可能会让学生对结论产生怀疑(尽管教师已经说明),那么是否有必要让学生经历一个“失误”的过程呢?类似教学如:圆周率的计算。

北师大版六年级下册数学《圆柱的体积》教案篇14

《数学课程标准》指出“数学教学要让学生经历知识的形成过程,能够初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活和学科学习中的问题,增加应用数学的意识”。新课标注重的不只是让学生掌握学习中的结论,更关注的是个性的体验,让学生在活动中体验、在实践中运用即让学生主动参与、实践交流、合作探究中去经历知识形成的过程,通过不断地发现问题、提出问题、分析问题、解决问题,积累生活中的经验,培养应用数学的能力,体验数学的乐趣,感受数学在生活中的应用价值。

圆柱的体积这节课是在学生已经初步理解体积和容积的含义、掌握了长方体和正方体体积计算方法的基础上学习的。本节内容包括圆柱的体积计算公式的推导,利用公式计算圆柱的体积,能运用圆柱的体积解决生活中的实际问题。

教学情境如下:

一:情境引入,感性认识

师:(拿出橡皮泥)你知道它的体积吗?你用什么方法知道的,说给大家听一听。

生:捏成长方体或正方体,量出长、宽、高后再用公式:长×宽×高计算出体积。

师:你还能捏成我们学过的其他图形吗?(学生操作:捏成圆柱)

师:现在你会计算它的体积吗?猜一猜,怎么办呢?(学生操作:圆柱捏成长方体)

师:你发现了什么?

生:形状变,体积不变.

师:我们曾经学过可以把什么图形通过什么方法转化成什么图形求面积呢?

生:圆切割拼成一个近似的长方形。

师:圆柱形橡皮泥的体积会求了,如果要求圆柱体容器里水的体积该怎么办?

生:把水倒入长方体容器中,再测量计算。

师:要求圆柱体铁块的体积呢?

生:把它浸入水中,求出排出水的体积。

师:要求商场门口圆柱体柱子的体积呢?(生面面相觑,不知所措)。

二:自主探究,迁移转化

1、引导

师:有的同学把圆柱转化成我们已学过的立体图形,来计算它的体积。

(让学生互相讨论,应如何转化,然后组织全班汇报)

生:把圆柱的底面分成许多相等的扇形,然后把圆柱切开,再把它拼起来,就转化成近似的长方体了。

2、操作

学生拿出事先准备好的萝卜(圆柱体模具)和小刀,让学生动手切一切,拼一拼。

3、感知:将圆柱体模具(已切好)当场演示。

①让一位学生把切割好的一半拿上又叉开;

②另一位学生将切割好的另一半拼合上去;

③观察得到一个什么形体?同时你发现了什么?

以四人小组为单位进行探索、讨论、总结。

小组汇报:

生:拼成的长方体和圆柱体不变的有:体积、底面积、高等;变了的有:侧面积、表面积、底面周长。

4、课件演示,让学生明白:分成的扇形越多,拼成的立体图形就越接近于长方体。

5、讨论:圆柱与所拼成的近似长方体之间的有什么联系?你发现了什么?

6、汇报:

圆柱→近似长方体

①体积相等②底面积相等③高相等④表面积不相等,

根据学生的回答板书如下:

长方体的体积=底面积×高

↓↓↓

圆柱体的体积=底面积×高

引导学生用字母表示计算公式:V=Sh

师:要用这个公式计算圆柱的体积必须知道什么条件?

生:底面积和高。

师:如果给你圆柱的直径(半径或者周长)和高,如何求圆柱的体积呢?

生:根据公式先求出半径,再求出底面积即可…

教学反思:

教学中充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、实践、比较找两个图形之间的关系,推导出圆柱的体积计算公式。直观有效的教学过程不需要教师繁复的讲解,学生在自主动手探索,互动交流讨论的学习空间里思维的火花自然而然地爆发出来。教学内容和重难点不仅得到实施和解决,更重要的是学生的综合能力得到提高。

实际教学中教师只有不断诱发学生主动思维的愿望,营造无拘无束的思维空间,让学生经历知识发现、探索、创造的过程,才能更有效地培养学生的创新能力,还要使学生在学习中发现数学知识“从生活中来到生活中去”的理念。

北师大版六年级下册数学《圆柱的体积》教案篇15

1、在推导圆柱体积计算公式的过程中通过观察,大胆猜想和验证获得新知识;

2、培养空间观念和动手操作的技能,发展推理能力,渗透转化思想。

3、积极参与数学学习活动,培养数学意识和合作意识。

学习重难点:圆柱体积的推导过程

学具准备:圆柱

学习过程:

一、自主学习

1、自学课本8页。完成下列各题。

(思考一分钟,然后将你的想法与大家分享)

怎样计算圆柱的体积呢?试一试能不能把圆柱转化为我们学过的立体图形,来计算它的体积?(温馨提示:想一想,圆的面积公式是怎么推导出来的?)

2、教师点拨:

圆柱的底面是形,可以分成许多相等的形,然后再把圆柱按照这些扇形,沿切开,拼起来,就近似一个体。平均分的份数越多(所分的份数必须是偶数),拼起来的整个形体就越近似于一个体。长方体的体积=()因此:圆柱体的体积=

如果用v表示圆柱的体积,用s表示圆柱的底面积,用h表示圆柱的高,圆柱的体积公式用字母表示为:

温馨提示:在计算过程中,有的并不是直接给出圆柱的底面积,而是给出底面半径或直径,我们应先求出,再求圆柱的体积。计算公式是:v=或。

二、合作探究填一填:

(小组合作完成下列各题,一组展示,其余补充、评价)

1、一个圆柱体,底面积是12平方分米,高6分米,它的体积是()立方分米。

2、一个圆柱体积是84立方厘米,底面积21平方厘米,高是()。

3、已知圆柱谷桶里底面半径是3米,高4米,它的底面积是(),容积是()立方米。

4.一个圆柱体底面半径是4分米,当高是()分米时,它的体积是62.8立方分米。

5.一个圆柱的底面周长是18.84分米,高是5分米,它的侧面积是()平方分米,体积是()立方分米。

三、学以致用判断:(先独立完成,再在小组内交流)

1.正方体的表面积是6平方厘米,它的体积一定是6立方厘米.()

2.所有圆的直径都相等.()

3.求一个水桶能装多少水,是求水桶的体积。()

4.求正方体、长方体、圆柱体的体积都可以用公式∶体积=底面积高。()

四、自我挑战台闯关随我来,红星等你摘

第一关基础知识面对面2颗红星等你摘★★

1、一个圆柱形木料,底面积为75平方厘米,长90厘米,它的体积是多少?

2、一个蓄水池是圆柱形的,从里面量,底面面积为31.4平方分米,高为2.8分米,这个水池能容多少升水?

恭喜你轻松闯过第一关,请摘红星★★()颗。

第二关基本技能现场演4颗红星等你摘★★★★

1、一个圆柱形水桶的体积是24立方分米,底面积是6平方分米,桶内装满了水,求水面高是多少分米?(水桶铁皮厚度忽略不计。)

2、有一个高为6.28分米的圆柱体的机件,它的侧面积展开正好是一个正方形,求这个机件的体积.

恭喜你顺利闯过第二关,请摘红星()颗。

第三关综合能力展示台6颗红星等你摘★★★★★★

5、把一根长1.5米的圆柱形钢材截成三段后,表面积比原来增加9.6平方分米,这根钢材原来的体积是多少?

6、.一段圆柱形的钢材。长60厘米。横截面直径10厘米。每立方厘米钢重7.8克,这段钢材重多少千克?(得数保留一位小数)

佩服你勇闯第三关,请摘红星()颗。

通过连闯三关,你共摘取红星()颗,把你的收获写下来吧。

北师大版六年级下册数学《圆柱的体积》教案篇16

【教学过程】

一、揭示课题,确定目标

谈话:前面我们认识了圆柱,学习了圆柱的底面积、侧面积和表面积,今天学习“圆柱的体积”。(教师板书,学生齐读)

启发:看到这个课题,你们会想到什么?这堂课要解决什么问题呀?(可能学生会提出以下几个问题)

引导:(1)什么是圆柱的体积?

(2)圆柱的体积和什么有关?

(3)圆柱的体积公式是怎样推导出来的?

(4)圆柱的体积是怎样求出来的?

(5)学习圆柱的体积公式有什么用?……

谈话:对!刚才这几位同学跟老师想的一样。

启发:圆柱的体积就是圆柱所占空间的大小

谈话:这堂课我们主要解决三个问题:(出示探究问题)

1、圆柱的体积和什么有关?

2、这个公式是怎样推导出来的?

3、学习了圆柱的体积能解决什么实际问题?

【设计意图】直接揭示课题,启发学生自己提出教学的要求,这样既创设了问题情境,激发学生学习的兴趣,又使学生明确这堂课的教学目标。

二、温故知新,自学课本

1、提出问题

谈话:现在请大家回忆一下,我们以前学过哪些立体图形的体积计算。是怎样计算的?

引导:我们已经学过长方体、正方体的体积计算。(教师随着学生的回答,逐一出示出上述图形)。

谈话:长方体的体积=长宽高

正方体的体积=棱长棱长棱长

统一为:长方体或正方体的体积=底面积高

谈话:长方体和正方体和今天学习的圆柱有什么显著的区别?

引导:长方体的面都是平面图形,圆柱的侧面是一个曲面。

谈话:因为圆柱的侧面是一个曲面,计算圆柱的体积就比较困难了。能不能直接用体积单位去量呢?

引导:它的侧面是一个曲面,用体积单位直接量是有困难的。

2、引发猜想

谈话:圆柱的体积和什么有关系呢?(准备三组比较圆柱体杯里饮料的多少:一组是底面积一样,高不同;另一组高一样,底面积不同;最后一组底面积、高都不同)

引导:圆柱体的体积既和底面积有关,又和高有关。

3、自学课本

谈话:圆柱体的体积和底面积、高到底有什么关系呢?如何求圆柱体的体积?

启发:请大家阅读课本,在课本中寻找答案。(教师要求学生利用预先准备好的平均分成16份圆柱学具拼一拼,学生一边看书,一边操作。学生阅读课本后,全班交流。)

引导:我们用图形转化的方法,求圆柱的体积。

谈话:这个办法很好。那么把圆柱转化成什么图形呢?

引导:长方体。

谈话:以前我们学习圆的面积时也是运用转化的策略,把圆转化成近似的长方形,“化曲为直”、“化圆为方”推导出圆的面积计算公式。

(用多媒体演示圆形的转化过程,边出示、边交流)

【设计意图】在不能用体积单位直接量的情况下,启发学生运用转化的数学思想解决问题。通过复习了旧知识,又为学习新知识作好铺垫,能够促进学生充分运用迁移规律把新旧知识联系起来组成一个新的知识结构。

三、合作交流发展能力

谈话:同学们观察一下,拼成的是什么图形?

引导:近似的长方体。

启发:说得很好,为什么说是近似的长方体,哪里不太像?

引导:长都是许多弧线组成,不是直的。

谈话:这里我们把圆柱分成16等分,还能分吗?

启发:可以分成32等分、64等分(多媒体课件演示)128等分……

谈话:究竟能分多少份呢?

引导:无数份,可以永远分下去。

谈话:对。这就是说,分的份数是无限的。你们可以闭上眼睛想一想,如果分的份数越多,长就越接近于直线段,这个图形就越接近于长方体。

四、师生合作归纳结论

谈话:从分割、拼接的操作过程中,比较拼成的近似长方体与原来的圆柱,你发现了什么?

汇报:(1)把圆柱体转化为近似的长方体,形状变了,体积没有变。

谈话:要求圆柱的体积,我们只要求转化后的长方体的体积就可以了。

汇报:(2)转化后的近似长方体的底面积与原来的圆柱体的底面积相等。

(3)转化后的近似长方体的高与原来的圆柱体的高相等。

因为:长方体的体积=底面积高

所以:圆柱的体积=底面积高

(教师要求学生观察自己在课堂上拼出的图形,一边讨论,一边逐步写出推导的过程。)

长方体的体积=底面积高

↓↓↓

圆柱的体积=底面积高

交流:我们也可以用字母表示圆柱的体积计算公式:v=sh(板书)

引导:刚才我们的猜想是正确的,圆柱的体积既和底面积有关,又和高有关。

现在请同学们把圆柱体积公式的推导过程再完整地说一遍。

谈话:通过猜一猜我们知道了圆柱体积的大小与圆柱的底面积和高有关。

通过分一分、拼一拼我们把圆柱转化成了近似的长方体。

通过比一比、算一算成功地推导出圆柱的体积计算公式,解决了我们前两个要探究的问题。

【设计意图】要求每个学生动手操作,打破了过去教师演示教具学生看的框框,并渗透转化、无限等数学思想,让学生自己从尝试中推导圆柱体积的公式。

北师大版六年级下册数学《圆柱的体积》教案篇17

●教学内容

苏教版六年级下册第二单元圆柱和圆锥第三课时P17~18页例4,P2页练一练,练习一1~3。

●设计说明

教学目标:

知识技能:结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。培养应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。

数学思考:让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

解决问题:通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

情感态度:提高学习数学的兴趣和学好数学的信心。

教学重点:

掌握和运用圆柱体积计算公式。

教学难点:

利用“转化”的方法推导圆柱体积公式的过程。

●课时安排

1课时

●教学准备

教师准备:多媒体课件一套。把圆柱沿底面等分成16份的教具。学生准备:预习教材,把圆柱沿底面等分成16份的教具。

●教学过程

一、创设情境,提出问题

某玩具厂厂长,他们厂新开发了一种积木玩具,这三个积木的底面积和高都相等,他想比较一下这三个积木的`体积的大小,同学们有什么方法?

二、动手实验,探索公式

1.观察、比较,建立猜想。引导生观察例4中的三个几何体,提问:

⑴长方体、正方体的体积相等吗?为什么?

(板书:长方体的体积=底面积×高)

⑵圆柱的体积与长方体、正方体的体积可能相等吗?这三个几何体的底面积和高都相等,它们的体积有什么关系?

2.实验操作,验证猜想

让学生自主探究(材料:圆柱体积木、圆柱体插拼教学具、师准备课件),想办法验证圆柱的体积与长方体、正方体的体积相等。

教师提示:你能想办法把圆柱转化成长方体吗?圆是如何转化成长方形的,可以模仿这样的方法来转化。

⑴小组合作研究怎样将圆柱体转化成一个长方体。

⑵小组代表汇报,全班交流。

(学生按照自己的方式来转化,会有多种转化方法,教师适时加以鼓励)⑶演示操作。

a.请一名学生演示用切、插、拼的方法把圆柱体转化成长方体。其他学生模仿操作。

b.思考:这是一个标准的长方体吗?为什么?如果分割的份数越多,你会有什么发现?

c.电脑演示圆柱体转化成长方体的过程(从16等份到32等份再到64等份)。

3.观察比较,推导公式。

a.小组讨论:

圆柱体转化成长方体后,什么变了,什么没有变?

b.根据学生的观察、分析、推想,老师完成板书:

长方体的体积=底面积×高

圆柱的体积=底面积×高