高一物理新课程标准总结(精选32篇)
高一物理新课程标准总结(精选32篇)
高一物理新课程标准总结篇1
本学期我担任3班和4班的物理教学工作,针对学生学习的实际情况开展教学,现将本学期的教学工作总结如下:
1、确定工作目标:
以实施新课程改革为目标,以24字教学方针为指导,以课堂教学改革为着力点,学习同事们的先进经验,结合学生的实际情况,努力强化教学管理,稳步提高教学质量。
2、充分重视课前准备
认真钻研教材,对教材的基本思想、基本概念吃透,了解教材的结构,重点与难点,掌握知识的逻辑,能运用自如,知道应补充哪些资料,怎样才能教好。备学生。了解学生原有的知识技能的质量,他们的兴趣、需要、方法、习惯,学习新知识可能会有哪些困难,采取相应的预防措施。
3、营造教学环境,优化教学手段
在教学中,我尽量构建一个宽松的环境,让学生在教师,集体面前想表现、敢表现、喜欢表现,活跃课堂气氛,增加师生的互动与交流。尽量精讲,节省出时间给学生精练,让学生在课堂上当堂掌握,一是可以减轻学生的课后作业负担,二是可以促进学生提高上课效率,有时效性。另外适时的设计一些问题让学生讨论,可以深化他们对问题的理解,并提出新的问题,有利于递进式教学。
4、及时的反馈
本学期要在课上和课后都有一个较完整的反馈机制。比如上课即时进行反馈性的练习。作业有问题的学生要与之交流,从中了解问题所在,以便及时改进。对于学习有困难的学生要经常沟通。
5、对于学习最困难学生的具体措施。
一定要让这些学生都把该弄懂的基础知识弄懂,一发现问题立即帮助他们解决。对他们正确引导,消除心理防碍,适当放慢速度,使他们对概念的理解和掌握随着认识能力的提高螺旋式上升。
6、师生关系:
良好的师生关系可以帮助我上好每一堂课;维持学生积极的学习态度;使学生保持对物理学科的学习兴趣。但是余要吸取过去一年的教训,与学生搞好关系决不是与一部分学生亲密无间,而是要去关心每一个学生特别是学习有困难的学生。
7、关注学生实际情况,注重学生能力培养
物理教学的重要任务是培养学生的能力。培养能力需要一个潜移默化的过程,不能只靠机械地灌输,也不能急于求成,需要有正确的学习态度和良好的学习习惯以及严谨的学习作风。准确理解并掌握物理概念和物理规律,是培养能力的基础。课堂练习和作业中,力求做题规范化。重视物理概念和规律的应用,逐步学会运用物理知识解释生活中的物理现象,提高独立分析和解决实际问题的能力。
8、不断提高自身水平及业务能力。
我积极参与听课、评课,虚心向同行学习教学方法,提高教学水平。特别是本学期组内开的几次校际公开课和校内公开课,我都力争节节必听,吸取这些老师的优点,并逐渐积累经验。
9、课堂教学改革与创新
学生主动式互动教学,教学的过程不再是教师讲授,学生听讲的单一过程,而是学生主动获得学习经历的过程,教师以一个交流者(甚至不是指导者)的身份出现在课堂上。教师以话题的形式引入教学内容,与学生一起讨论,让学生主动发现问题,总结出结论。甚至可以像说相声一样,与一名或多名学生在讲台前探讨,也可以让学生自己来讲。但是问题是如何指导学生的考虑从正确地思路出发,不然时间有限,会浪费掉大量的时间。
10、与信息技术的应用与整合
信息技术是工具,是平台。我觉得在物理教学中信息技术是很重要的。可以提供足够的教学资料,给我们提供了一条很好的信息获得途径。多媒体又是课堂教学的先进手段,通过视听,可以把很多生活中的物理现象即时的反映出来,一些重要的板书、表格和图片、例题很方便的就可以在教室里面展示。通过多媒体课件又可以把实验演示的活灵活现,物理模型也可以通过课件分析的透彻有余。但是多媒体设备我认为不是用来投影简单的上课讲稿的。所以我上课用多媒体设备主要是用来展示多媒体课件和媒体资料。
以上就是我在本学期的工作总结。由于经验颇浅,许多地方存在不足,希望在未来的日子里,能在各位领导老师,前辈的指导下,和我自己的积极努力下,取得更好成绩。
高一物理新课程标准总结篇2
力是物体之间的相互作用,有力必有施力物体和受力物体。力的大小、方向、作用点叫力的三要素。用一条有向线段把力的三要素表示出来的方法叫力的图示。
按照力命名的依据不同,可以把力分为:
①按性质命名的力(例如:重力、弹力、摩擦力、分子力、电磁力等。)
②按效果命名的力(例如:拉力、压力、支持力、动力、阻力等)。
力的作用效果:
①形变;
②改变运动状态.
高一物理新课程标准总结篇3
认识形变
1。物体形状回体积发生变化简称形变。
2。分类:按形式分:压缩形变、拉伸形变、弯曲形变、扭曲形变。
按效果分:弹性形变、塑性形变
3。弹力有无的判断:1)定义法(产生条件)
2)搬移法:假设其中某一个弹力不存在,然后分析其状态是否有变化。
3)假设法:假设其中某一个弹力存在,然后分析其状态是否有变化。
弹性与弹性限度
1。物体具有恢复原状的性质称为弹性。
2。撤去外力后,物体能完全恢复原状的形变,称为弹性形变。
3。如果外力过大,撤去外力后,物体的形状不能完全恢复,这种现象为超过了物体的弹性限度,发生了塑性形变。
探究弹力
1。产生形变的物体由于要恢复原状,会对与它接触的物体产生力的作用,这种力称为弹力。
2。弹力方向垂直于两物体的接触面,与引起形变的外力方向相反,与恢复方向相同。
绳子弹力沿绳的收缩方向;铰链弹力沿杆方向;硬杆弹力可不沿杆方向。
弹力的作用线总是通过两物体的接触点并沿其接触点公共切面的垂直方向。
3。在弹性限度内,弹簧弹力F的大小与弹簧的伸长或缩短量x成正比,即胡克定律。
F=kx
4。上式的k称为弹簧的劲度系数(倔强系数),反映了弹簧发生形变的难易程度。
5。弹簧的串、并联:串联:1/k=1/k1+1/k2并联:k=k1+k2
第二节研究摩擦力
滑动摩擦力
1。两个相互接触的物体有相对滑动时,物体之间存在的摩擦叫做滑动摩擦。
2。在滑动摩擦中,物体间产生的阻碍物体相对滑动的作用力,叫做滑动摩擦力。
3。滑动摩擦力f的大小跟正压力N(≠G)成正比。即:f=μN
4。μ称为动摩擦因数,与相接触的物体材料和接触面的粗糙程度有关。0<μ<1。
5。滑动摩擦力的方向总是与物体相对滑动的方向相反,与其接触面相切。
6。条件:直接接触、相互挤压(弹力),相对运动/趋势。
7。摩擦力的大小与接触面积无关,与相对运动速度无关。
8。摩擦力可以是阻力,也可以是动力。
9。计算:公式法/二力平衡法。
研究静摩擦力
1。当物体具有相对滑动趋势时,物体间产生的摩擦叫做静摩擦,这时产生的摩擦力叫静摩擦力。
2。物体所受到的静摩擦力有一个限度,这个值叫静摩擦力。
3。静摩擦力的方向总与接触面相切,与物体相对运动趋势的方向相反。
4。静摩擦力的大小由物体的运动状态以及外部受力情况决定,与正压力无关,平衡时总与切面外力平衡。0≤F=f0≤fm
5。静摩擦力的大小与正压力接触面的粗糙程度有关。fm=μ0·N(μ≤μ0)
6。静摩擦有无的判断:概念法(相对运动趋势);二力平衡法;牛顿运动定律法;假设法(假设没有静摩擦)。
第三节力的等效和替代
力的图示
1。力的图示是用一根带箭头的线段(定量)表示力的三要素的方法。
2。图示画法:选定标度(同一物体上标度应当统一),沿力的方向从力的作用点开始按比例画一线段,在线段末端标上箭头。
3。力的示意图:突出方向,不定量。
力的等效/替代
1。如果一个力的作用效果与另外几个力的共同效果作用相同,那么这个力与另外几个力可以相互替代,这个力称为另外几个力的合力,另外几个力称为这个力的分力。
2。根据具体情况进行力的替代,称为力的合成与分解。求几个力的合力叫力的合成,求一个力的分力叫力的分解。合力和分力具有等效替代的关系。
3。实验:平行四边形定则:P58
第四节力的合成与分解
力的平行四边形定则
1。力的平行四边形定则:如果用表示两个共点力的线段为邻边作一个平行四边形,则这两个邻边的对角线表示合力的大小和方向。
2。一切矢量的运算都遵循平行四边形定则。
合力的计算
1。方法:公式法,图解法(平行四边形/多边形/△)
2。三角形定则:将两个分力首尾相接,连接始末端的有向线段即表示它们的合力。
3。设F为F1、F2的合力,θ为F1、F2的夹角,则:
F=√F12+F22+2F1F2cosθtanθ=F2sinθ/(F1+F2cosθ)
当两分力垂直时,F=F12+F22,当两分力大小相等时,F=2F1cos(θ/2)
4。1)|F1—F2|≤F≤|F1+F2|
2)随F1、F2夹角的增大,合力F逐渐减小。
3)当两个分力同向时θ=0,合力:F=F1+F2
4)当两个分力反向时θ=180°,合力最小:F=|F1—F2|
5)当两个分力垂直时θ=90°,F2=F12+F22
分力的计算
1。分解原则:力的实际效果/解题方便(正交分解)
2。受力分析顺序:G→N→F→电磁力
第五节共点力的平衡条件
共点力
如果几个力作用在物体的同一点,或者它们的作用线相交于同一点(该点不一定在物体上),这几个力叫做共点力。
寻找共点力的平衡条件
1。物体保持静止或者保持匀速直线运动的状态叫平衡状态。
2。物体如果受到共点力的作用且处于平衡状态,就叫做共点力的平衡。
3。二力平衡是指物体在两个共点力的作用下处于平衡状态,其平衡条件是这两个离的大小相等、方向相反。多力亦是如此。
4。正交分解法:把一个矢量分解在两个相互垂直的坐标轴上,利于处理多个不在同一直线上的矢量(力)作用分解。
第六节作用力与反作用力
探究作用力与反作用力的关系
1。一个物体对另一个物体有作用力时,同时也受到另一物体对它的作用力,这种相互作用力称为作用力和反作用力。
2。力的性质:物质性(必有施/手力物体),相互性(力的作用是相互的)
3。平衡力与相互作用力:
同:等大,反向,共线
异:相互作用力具有同时性(产生、变化、小时),异体性(作用效果不同,不可抵消),二力同性质。平衡力不具备同时性,可相互抵消,二力性质可不同。
牛顿第三定律
1。牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等、方向相反。
2。牛顿第三定律适用于任何两个相互作用的物体,与物体的质量、运动状态无关。二力的产生和消失同时,无先后之分。二力分别作用在两个物体上,各自分别产生作用效果。
高一物理新课程标准总结篇4
速度变化的快慢加速度
1.物体的加速度等于物体速度变化(vt—v0)与完成这一变化所用时间的比值
a=(vt—v0)/t
2.a不由△v、t决定,而是由F、m决定。
3.变化量=末态量值—初态量值……表示变化的大小或多少
4.变化率=变化量/时间……表示变化快慢
5.如果物体沿直线运动且其速度均匀变化,该物体的运动就是匀变速直线运动(加速度不随时间改变)。
6.速度是状态量,加速度是性质量,速度改变量(速度改变大小程度)是过程量。
用图象描述直线运动
匀变速直线运动的位移图象
1.s-t图象是描述做匀变速直线运动的物体的位移随时间的变化关系的曲线。(不反映物体运动的轨迹)
2.物理中,斜率k≠tanα(2坐标轴单位、物理意义不同)
3.图象中两图线的交点表示两物体在这一时刻相遇。
匀变速
直线运动的速度图象
1.v-t图象是描述匀变速直线运动的物体岁时间变化关系的图线。(不反映物体运动轨迹)
2.图象与时间轴的面积表示物体运动的位移,在t轴上方位移为正,下方为负,整个过程中位移为各段位移之和,即各面积的代数和。
高一物理新课程标准总结篇5
平抛运动
1.水平方向速度V_x=V_o2.竖直方向速度V_y=gt
3.水平方向位移S_x=V_ot4.竖直方向位移S_y=gt2/2
5.运动时间t=(2S_y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度V_t=(V_x2+V_y2)1/2=[V_o2+(gt)2]1/2
合速度方向与水平夹角β:tgβ=V_y/V_x=gt/V_o
7.合位移S=(S_x2+S_y2)1/2,
位移方向与水平夹角α:tgα=S_y/S_x=gt/(2V_o)
注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。(2)运动时间由下落高度h(S_y)决定与水平抛出速度无关。(3)θ与β的.关系为tgβ=2tgα。(4)在平抛运动中时间t是解题关键。(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。
2)匀速圆周运动
1.线速度V=s/t=2πR/T2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/R=ω2R=(2π/T)2R4.向心力F心=mV2/R=mω2R=m(2π/T)2R
5.周期与频率T=1/f6.角速度与线速度的关系V=ωR
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8.主要物理量及单位:弧长(S):米(m)角度(Φ):弧度(rad)频率(f):赫(Hz)
周期(T):秒(s)转速(n):r/s半径(R):米(m)线速度(V):m/s
角速度(ω):rad/s向心加速度:m/s2
注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。
3)万有引力
1.开普勒第三定律T2/R3=K(4π2/GM)R:轨道半径T:周期K:常量(与行星质量无关)
2.万有引力定律F=Gm_1m_2/r2G=6.67×10-11N·m2/kg2方向在它们的连线上
3.天体上的重力和重力加速度GMm/R2=mgg=GM/R2R:天体半径(m)
4.卫星绕行速度、角速度、周期V=(GM/R)1/2
ω=(GM/R3)1/2T=2π(R3/GM)1/2
5.第一(二、三)宇宙速度V_1=(g地
r地)1/2=7.9Km/sV_2=11.2Km/sV_3=16.7Km/s
6.地球同步卫星GMm/(R+h)2=m4π2(R+h)/T2
h≈36000km/h:距地球表面的高度
注:(1)天体运动所需的向心力由万有引力提供,F心=F万。(2)应用万有引力定律可估算天体的质量密度等。(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。(5)地球卫星的环绕速度和最小发射速度均为7.9Km/S.
高一物理新课程标准总结篇6
自由落体运动的定义
从静止出发,只在重力作用下而降落的运动模式,叫自由落体运动。
自由落体运动是最典型的匀变速直线运动;是初速度为零,加速度为g的匀加速直线运动。
地球表面附近的上空可看作是恒定的重力场。如不考虑大气阻力,在该区域内的自由落体运动的方向是竖直向下的(并非指向地心),加速度为重力加速度g的匀加速直线运动。
只有在赤道上或者两极上,自由落体运动的方向(也就是重力的方向)才是指向地球中心的。
g≈9.8m/s^2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
自由落体运动的基本公式
(1)Vt=gt
(2)h=1/2gt^2
(3)Vt^2=2gh
这里的h与x同样都是指位移,一般在自由落体中用h表示数值方向的位移量。
自由落体运动的研究先驱者
对自由落体最先研究的是古希腊的科学家亚里士多德,他提出:物体下落的快慢是由物体本身的重量决定的,物体越重,下落得越快;反之,则下落得越慢。
亚里士多德,前384年4月23日-前322年3月7日,古希腊哲学家,柏拉图的学生、亚历山大大帝的老师。
他的著作包含许多学科,包括了物理学、形而上学、诗歌(包括戏剧)、生物学、动物学、逻辑学、政治、政府、以及_学。和柏拉图、苏格拉底(柏拉图的老师)一起被誉为西方哲学的奠基者。亚里士多德的著作是西方哲学的第一个广泛系统,包含道德、美学、逻辑和科学、政治和玄学。
伽利略是意大利天文学家,也是世界物理学家。他于1564年诞生在意大利北部的比萨市,1642年1月8日去世,终年78岁。他毕生致力于科学事业,不仅为我们留下了时钟、望远镜和众多的科学专著,而且还为破除宗教迷信、科学偏见作出了杰出的贡献。
伽利略在1638年写的《两种新科学的对话》一书中指出:根据亚里士多德的论断,一块大石头的下落速度要比一块小石头的下落速度大。假定大石头的下落速度为8,小石头的下落速度为4,当我们把两块石头拴在一起时,下落快的会被下落慢的拖着而减慢,下落慢的会被下落快的拖着而加快,结果整个系统的下落速度应该小于8。但是两块石头拴在一起,加起来比大石头还要重,因此重物体比轻物体的下落速度要小。这样,就从重物体比轻物体下落得快的假设,推出了重物体比轻物体下落得慢的结论。亚里士多德的理论陷入了自相矛盾的境地。伽利略由此推断重物体不会比轻物体下落得快。伽利略的假设推导法,对物理思维方法起到了非常重要的作用。
伽利略曾在的比萨斜塔做了的自由落体试验,让两个体积相同,质量不同的球从塔顶同时下落,结果两球同时落地,以实践驳倒了亚里士多德的结论。但是后来经过历史的严格考证,伽利略并没有在比萨斜塔做实验,人们却还是把比萨斜塔当作对伽利略的纪念碑。
高一物理新课程标准总结篇7
认识形变
1.物体形状回体积发生变化简称形变。
2.分类:按形式分:压缩形变、拉伸形变、弯曲形变、扭曲形变。
按效果分:弹性形变、塑性形变
3.弹力有无的判断:1)定义法(产生条件)
2)搬移法:假设其中某一个弹力不存在,然后分析其状态是否有变化。
3)假设法:假设其中某一个弹力存在,然后分析其状态是否有变化。
弹性与弹性限度
1.物体具有恢复原状的性质称为弹性。
2.撤去外力后,物体能完全恢复原状的形变,称为弹性形变。
3.如果外力过大,撤去外力后,物体的形状不能完全恢复,这种现象为超过了物体的弹性限度,发生了塑性形变。
探究弹力
1.产生形变的物体由于要恢复原状,会对与它接触的物体产生力的作用,这种力称为弹力。
2.弹力方向垂直于两物体的接触面,与引起形变的外力方向相反,与恢复方向相同。
绳子弹力沿绳的收缩方向;铰链弹力沿杆方向;硬杆弹力可不沿杆方向。
弹力的作用线总是通过两物体的接触点并沿其接触点公共切面的垂直方向。
3.在弹性限度内,弹簧弹力F的大小与弹簧的伸长或缩短量x成正比,即胡克定律。
F=kx
4.上式的k称为弹簧的劲度系数(倔强系数),反映了弹簧发生形变的难易程度。
5.弹簧的串、并联:串联:1/k=1/k1+1/k2并联:k=k1+k2
高一物理新课程标准总结篇8
向心加速度
向心加速度(匀速圆周运动中的加速度)的计算公式:
a=rω^2=v^2/r
说明:a就是向心加速度,推导过程并不简单,但可以说仍在高
科里奥利加速度
科里奥利加速度
中生理解范围内,这里略去了。r是圆周运动的半径,v是速度(特指线速度)。ω(就是欧姆的小写)是角速度。
这里有:v=ωr.
1.匀速圆周运动并不是真正的匀速运动,因为它的速度方向在不断的变化,所以说匀速圆周运动只是匀速率运动的一种。至于说为什么叫他匀速圆周运动呢?可能是大家说惯了不愿意换了吧。
2.匀速圆周运动的向心加速度总是指向圆心,即不改变速度的大小只是不断地改变着速度的方向。
重力加速度
地球表面附近的物体因受重力产生的加速度叫做重力加速度,也叫自由落体加速度,用g表示。
重力加速度g的方向总是竖直向下的。在同一地区的同一高度,任何物体的重力加速度都是相同的。重力加速度的数值随海拔高度增大而减小。当物体距地面高度远远小于地球半径时,g变化不大。而离地面高度较大时,重力加速度g数值显着减小,此时不能认为g为常数
距离面同一高度的重力加速度,也会随着纬度的升高而变大。由于重力是万有引力的一个分力,万有引力的另一个分力提供了物体绕地轴作圆周运动所需要的向心力。物体所处的地理位置纬度越高,圆周运动轨道半径越小,需要的向心力也越小,重力将随之增大,重力加速度也变大。地理南北两极处的圆周运动轨道半径为0,需要的向心力也为0,重力等于万有引力,此时的重力加速度也达到。
由于g随纬度变化不大,因此国际上将在纬度45°的海平面精确测得物体的重力加速度g=9.80665m/s^2;作为重力加速度的标准值。在解决地球表面附近的问题中,通常将g作为常数,在一般计算中可以取g=9.80m/s^2。理论分析及精确实验都表明,随纬度增大,重力加速度g的数值逐渐增大。如:
赤道g=9.780m/s^2
广州g=9.788m/s^2
武汉g=9.794m/s^2
上海g=9.794m/s^2
东京g=9.798m/s^2
北京g=9.801m/s^2
纽约g=9.803m/s^2
莫斯科g=9.816m/s^2
北极地区g=9.832m/s^2
注:月球面的重力加速度约为1.62m/s^2,约为地球重力的六分之一。
匀加速直线动动的公式
1.匀加速直线运动的位移公式:
s=V0t+(at^2)/2=(vt^2-v0^2)/2a=(v0+vt)t/2
2.匀加速直线运动的速度公式:
vt=v0+at
3.匀加速直线运动的平均速度(也是中间时刻的瞬时速度):
v=(v0+vt)/2
其中v0为初速度,vt为t时刻的速度,又称末速度。
4.匀加速度直线运动的几个重要推论:
(1)V末^2-V初^2=2as(以初速度方向为正方向,匀加速直线运动,a取正值;匀减速直线运动,a取负值。)
(2)AB段中间时刻的即时速度:
Vt/2=(v初+v末)/2
(3)AB段位移中点的即时速度:
Vs/2=[(v末^2+v初^2)/2]^(1/2)
(4)初速为零的匀加速直线运动,在1s,2s,3s……ns内的位移之比为1^2:2^2:3^2……:n^2;
(5)在第1s内,第2s内,第3s内……第ns内的位移之比为1:3:5……:(2n-1);
(6)在第1米内,第2米内,第3米内……第n米内的时间之比为1:2^(1/2):3^(1/2):……:n^(1/n)
(7)初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数:△s=aT^2(a一匀变速直线运动的加速度T一每个时间间隔的时间)。
(8)竖直上抛运动:上升过程是匀减速直线运动,下落过程是匀加速直线运动.全过程是初速度为VO,加速度为g的匀减速直线运动.
高一物理新课程标准总结篇9
牛顿第一定律
定义:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
惯性
1、定义:物体具有的保持原来的匀速直线运动状态或静止状态的性质。
2、惯性是物体的固有属性,惯性不是一种力。任何物体在任何情况下都具有惯性。
3、惯性的大小只由物体本身的特征决定,与外界因素无关。
4、惯性是不能被克服的,但可以利用惯性做事或防止惯性的不良影响。
5、不要把惯性概念与惯性定律相混淆。惯性是万物皆有的保持原运动状态的一种属性,惯性定律则是物体不受外力作用时的运动定律。
运动状态
1、运动状态指的是物体的速度
速度是是矢量,速度不变则运动状态不变,速度改变运动状态也就改变了,所以运动状态不断改变的物体总有加速度。
2、力是使物体产生加速度的原因
3、质量是物体惯性大小的量度
高一物理新课程标准总结篇10
第一节认识运动
机械运动:物体在空间中所处位置发生变化,这样的运动叫做机械运动。
运动的特性:普遍性,永恒性,多样性
参考系
1.任何运动都是相对于某个参照物而言的,这个参照物称为参考系。
2.参考系的选取是自由的。
(1)比较两个物体的运动必须选用同一参考系。
(2)参照物不一定静止,但被认为是静止的。
质点
1.在研究物体运动的过程中,如果物体的大小和形状在所研究问题中可以忽略是,把物体简化为一个点,认为物体的质量都集中在这个点上,这个点称为质点。
2.质点条件:
(1)物体中各点的运动情况完全相同(物体做平动)
(2)物体的大小(线度)0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.
2、△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
3、△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.
高一物理新课程标准总结篇11
1.电容定义:电容器所带的电荷量Q与电容器两极板间的电势U的比值,叫做电容器的电容
C=Q/U,式中Q指每一个极板带电量的绝对值
①电容是反映电容器本身容纳电荷本领大小的物理量,跟电容器是否带电无关。
②电容的单位:在国际单位制中,电容的单位是法拉,简称法,符号是F。
常用单位有微法(μF),皮法(pF)1μF=10-6F,1pF=10-12F
2.平行板电容器的电容C:跟介电常数成正比,跟正对面积S成正比,跟极板间的距离d成反比。
是电介质的介电常数,k是静电力常量;空气的介电常数最小。
3.电容器始终接在电源上,电压不变;电容器充电后断开电源,带电量不变。
高一物理新课程标准总结篇12
1、“绳模型”如上图所示,小球在竖直平面内做圆周运动过点情况。
(注意:绳对小球只能产生拉力)
(1)小球能过点的临界条件:绳子和轨道对小球刚好没有力的作用
(2)小球能过点条件:v≥(当v>时,绳对球产生拉力,轨道对球产生压力)
(3)不能过点条件:v0(F为支持力)
(3)当v=时,F=0
(4)当v>时,F随v增大而增大,且F>0(F为拉力)
高一物理新课程标准总结篇13
这个学期,我们高一物理备课组认真完成了学校布置的各项工作。本学期,我们高一物理备课组按照学校的要求开展工作,认真学习研究新的《物理教学大纲》和考试说明,有的放矢地备课、教学。新的教学大纲所要求的考试范围、考试重点、命题形式均有所变化,我们都细心研究,全体备课组的老师都认真学习新课标,学习新教材,与旧教材、旧教学大纲进行对比,充分调动主观能动性。
本备课小组这个学期开展了的工作如下:
一、认真备课,完善集体备课制度。
为了发挥集体的力量和智慧,我们尽量能够集体备课,遇到一些难题时大家能一起讨论,找到一种比较好的解决方法。各位任课教师再根据自己所教学生情况,适当增减,形成自己的教案。
备课组活动做到“三定”、“四备”和“五统一”,即定时间、定内容、定中心发言人;备教材、备学生、备教法、备学法;统一教学进度、统一目的要求、统一重点难点、统一作业练习、统一测验考试。由于使用新教材备课组加强对教材、教法、学法以及练习的研究,以便尽快适应新教材。备课组抓好每次集体备课的质量,落实好备课的专题,有效地把备课内容转化到教学实践中。
备课组这一个学期以来,每周都定期召开备课组活动。大家坐在一起,认真讨论教学教法,分享前一段时间的教学体会,拟定后一段时间的教学进度,对一些难点问题提出来,大家一起讨论,找到解决问题的办法。大家还在一起研究教材,理解教学大纲,使每一节课的教学目标明确,还讨论一些比较好的教学方法,尽量使每一位同学都有兴趣地去学习。具体安排如下:
第五章曲线运动主备:黄湘华
第六章万有引力与航天主备:何乐成
第七章机械能守恒定律主备:游文艺
二、积极做好资料、信息收集工作。
我们手头上有关新教材的复习资料少,有关新高考的信息不多,所以注意到了收集、积累,用以或指导或补充我们的高一的学习。大家分工去收集和查找资料,然后整理出一些练习再印发给学生去做。学生只有多做练习,成绩才会有所提高,才能取得更好的教学效果。
三、加强课题研究,提高教师的教学水平。
我们高一物理备课组,本学期开展新课程改革教学研究课题,课堂教学模式的构建与实践,指导物理学习方法,培养学生学习能力的研究,进一步完善研究内容,做到分工明确,责任到人,保证研究质量。提高研究效益,并做好课题的总结工作,在认真总结的基础上推广研究成果。为了新教材的素材资料,我们高一备课组在每测验一章知识后都及时把试题上传到本年级的课件收集文件夹中,每个科任教师每上完一节课要把使用过的物理课件和物理图片等有关的新教材素材,都及时上传到本年级课件收集文件夹内自己设立的个人文件夹中。
四、落实教学工作制度。
期中和期末联合教务处进行两次教学工作检查,检查教师完成教育教学任务的情况,检查教师的课堂教学状况,检查教师备课、辅导及作业批改等情况,检查教师教研工作情况等等。
五、狠抓教学常规管理。
在抓好备课质量的基础上,强化作业布置、批改、以及学生书写格
式规范化的管理。把学生的学习质量落到实处,促进学生良好学习习惯的养成,推动良好学风的形成。
六、公开课开展顺利。
这个学期,我们备课组认真地安排上公开课的老师,并有序地进行公开课。对上公开课的老师要事先写好教学计划,进行说课,然后把教案打印出来。备课组认真组织老师去听课,听完课后大家能在一起讨论这节课的优缺点,在自己学到一些好的教学方法的.同时,也让授课老师能及时发现自己存在的问题。
七、备课组对每一次考试。
都认真安排老师出好题目,并打印出来大家一起研究,看哪些地方要进行修改,然后再经过调整才上交到学校统一印刷。每一次考完试后,大家能及时按时,认真地批改试卷,对学生的考试情况认真地记录下来,并写出试卷分析。
备课组活动对年级学科教学质量起着十分重要的作用,备课组是发挥集体优势的最小但又是最基本的团体,他能在第一时间内发现问题并解决问题,实实在在地进行学科教科研活动。目前我们备课组尚需在以往层面上深入展开教科研、更深入开展突破教学难点方面的交流、研究。我们坚信,抓好备课组活动是提高教学质量的基本工作。今后的工作还需要我们踏踏实实的去做。
高一物理新课程标准总结篇14
一、电动势
(1)定义:在电源内部,非静电力所做的功W与被移送的电荷q的比值叫电源的电动势。
(2)定义式:E=W/q
(3)单位:伏(V)
(4)物理意义:表示电源把其它形式的能(非静电力做功)转化为电能的本领大小。电动势越大,电路中每通过1C电量时,电源将其它形式的能转化成电能的数值就越多。
二、电源(池)的几个重要参数
(1)电动势:它取决于电池的正负极材料及电解液的化学性质,与电池的大小无关。
(2)内阻(r):电源内部的电阻。
(3)容量:电池放电时能输出的总电荷量。其单位是:A·h,mA·h.
高一物理新课程标准总结篇15
标量和矢量:
(1)将物理量区分为矢量和标量体现了用分类方法研究物理问题。
(2)矢量和标量的根本区别在于它们遵从不同的运算法则:标量用代数法;矢量用平行四边形定则或三角形定则。
(3)同一直线上矢量的合成可转为代数法,即规定某一方向为正方向,与正方向相同的物理量用正号代人,相反的用负号代人,然后求代数和,最后结果的正、负体现了方向,但有些物理量虽也有正负之分,运算法则也一样,但不能认为是矢量,最后结果的正负也不表示方向,如:功、重力势能、电势能、电势等。
共点力
几个力如果都作用在物体的同一点上,或者它们的作用线相交于同一点,这几个力叫共点力。
力的合成方法
求几个已知力的合力叫做力的合成。
平行四边形定则:
两个互成角度的力的合力,可以用表示这两个力的有向线段为邻边,作平行四边形,它的对角线就表示合力的大小及方向,这是矢量合成的普遍法则。
高一物理新课程标准总结篇16
一.曲线运动
1.曲线运动的位移:平面直角坐标系通常设位移方向与x轴夹角为α
2.曲线运动的速度:
①质点在某一点的速度,沿曲线在这一点的切线方向
②速度在平面直角坐标系中可分解为水平速度Vx及竖直速度Vy,V2=Vx2+Vy2
3.曲线运动是变速运动(速度是矢量,方向或大小任一的改变都会造成速度的变化,曲线运动中,速度的方向一定改变)
4.物体做曲线运动的条件:物体所受合力的方向与它的速度方向不在同一直线上
二.平抛运动(曲线运动特例)
1.定义:以一定的速度将物体抛出,如果物体只受重力的作用,这时的运动叫做抛体运动,抛体运动开始时的速度叫做初速度。如果初速度是沿水平方向的,这个运动叫做平抛运动
2.平抛运动的速度:①水平方向做匀速直线运动初速度V0即为Vx一直保持不变
②竖直方向做自由落体运动Vy=gt
③合速度:V2=Vx2+Vy2=V02+(gt)2方向:与X轴的夹角为θtanθ=Vy/V0=gt/V0
3.平抛运动的位移:①水平方向X=V0t
②竖直方向y=1/2gt2③合位移S2=x2+y2=(V0t)2+(1/2gt2)2方向:与X轴夹角为αtanα=y/x=V0t/?gt2=2V0/gt
三.圆周运动
1.线速度V:①圆周运动的快慢可以用物体通过的弧长与所用时间的比值来量度该比值即为线速度②V=Δs/Δt单位:m/s③匀速圆周运动:物体沿着圆周运动,并且线速度的大小处处相等(tips:方向时时改变)
2.角速度ω:①物体做圆周运动的快慢还可以用它与圆心连线扫过角度的快慢来描述,即角速度②公式ω=Δθ/Δt(角度使用弧度制)ω的单位是rad/s
3.转速r:物体单位时间转过的圈数单位:转每秒或转每分
4.周期T:做匀速圆周运动的物体,转过一周所用的时间单位:秒S
5.关系式:V=ωr(r为半径)ω=2π/T
6.向心加速度①定义:任何做匀速圆周运动的物体的加速度都指向圆心,这个加速度叫做向心加速度
②表达式a=V2/r=ω2r=(4π2/T2)r=4π2f2r=4π2n2r(n指转过的圈数)方向:指向圆心
四.开普勒定律
1.开普勒第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处于椭圆的一个焦点上
2.开普勒第二定律:对任意一个行星来说,它与太阳的连线在相等的时间扫过相等的面积
3.开普勒第三定律:①所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等②a—椭圆轨道的半长轴T—公转周期则a3/T2=k对同一个行星来说,k为常量
高一物理新课程标准总结篇17
物体与质点
1、质点:当物体的大小和形状对所研究的问题而言影响不大或没有影响时,为研究问题方便,可忽略其大小和形状,把物体看做一个有质量的点,这个点叫做质点。
2、物体可以看成质点的条件
条件:①研究的物体上个点的运动情况完全一致。
②物体的线度必须远远的大于它通过的距离。
(1)物体的形状大小以及物体上各部分运动的差异对所研究的问题的影响可以忽略不计时就可以把物体当作质点
(2)平动的物体可以视为质点
平动的物体上各个点的运动情况都完全相同的物体,这样,物体上任一点的运动情况与整个物体的运动情况相同,可用一个质点来代替整个物体。
小贴士:质点没有大小和形状因为它仅仅是一个点,但是质点一定有质量,因为它代表了一个物体,是一个实际物体的理想化的模型。质点的质量就是它所代表的物体的质量。
参考系
1、参考系的定义:描述物体的运动时,用来做参考的另外的物体。
2、对参考系的理解:
(1)物体是运动还是静止,都是相对于参考系而言的,例如,肩并肩一起走的两个人,彼此就是相对静止的,而相对于路边的建筑物,他们却是运动的。
(2)同一运动选择不同的参考系,观察结果可能不同。例如司机开着车行驶在高速公路上以车为参考系,司机是静止的,以路面为参考系,司机是运动的。
(3)比较物体的运动,应该选择同一参考系。
(4)参考系可以是运动的物体,也可以是静止的物体。
小贴士:只有选择了参考系,说某个物体是运动还是静止,物体怎样运动才变得有意义参考系的选择是研究运动的前提是一项基本技能。
坐标系
1、坐标系物理意义:在参考系上建立适当的坐标系,从而,定量地描述物体的位置及位置变化。
2、坐标系分类:
(1)一维坐标系(直线坐标系):适用于描述质点做直线运动,研究沿一条直线运动的物体时,要沿着运动直线建立直线坐标系,即以物体运动所沿的直线为x轴,在直线上规定原点、正方向和单位长度。例如,汽车在平直公路上行驶,其位置可用离车站(坐标原点)的距离(坐标)来确定。
(2)二维坐标系(平面直角坐标系)适用于质点在平面内做曲线运动。例如,运动员推铅球以铅球离手时的位置为坐标原点,沿铅球初速方向建立x轴,竖直向下建立y轴,铅球的坐标为铅球离开手后的水平距离和竖直距离。
(3)三维坐标系(空间直角坐标系):适用于物体在三维空间的运动。例如,篮球在空中的运动。
高一物理新课程标准总结篇18
加速度-加速运动与减速运动
物体运动时,如果加速度不为零,则处于加速状态。若加速度大于零,则为正加速;若加速度小于零,则为负加速(即速度减至0后反向加速)。(提示:物理中的符号不同于数学中的符号,在+、-号只代表是的标量,在物理中+、-号部分代表单纯的标量,还有部分还代表的像方向啦什么的矢量)
V=v末—v初
加速度公式:a=△V/△t
加速度-曲线加速运动
在加速度保持不变的时候,物体也有可能做曲线运动。比如,当你把一个物体沿水平方向用力抛出时,你会发现,这个物体离开桌面以后,在空中划过一条曲线,落在了地上。
物体在出手以后,受到的只有竖直向下的重力,因此加速度的方向和大小都不改变。但是物体由于惯性还在水平方向上以出手速度运动。这时,物体的速度方向与加速度方向就不在同一直线上了。物体就会往力的方向偏转,划过一条往地面方向偏转的曲线。
但是这个时候,由于重力大小不变,因此加速度大小也不变。物体仍然做的是匀加速运动,但不过是匀加速曲线运动。
加速度-小问题——加速度单位的来历
根据我们高中的课本描述,有加速度a=(Δv)/(Δt)=(v1-v2)/t,因为速度(v)的单位是m/s,时间(t)的单位是s,于是将m/s与s相除,得到的就是它的单位:m/s^2.
高一物理新课程标准总结篇19
曲线运动
1、在曲线运动中,质点在某一时刻(某一位置)的速度方向是在曲线上这一点的切线方向。
2、物体做直线或曲线运动的'条件:
(已知当物体受到合外力F作用下,在F方向上便产生加速度a)
(1)若F(或a)的方向与物体速度v的方向相同,则物体做直线运动;
(2)若F(或a)的方向与物体速度v的方向不同,则物体做曲线运动。
3、物体做曲线运动时合外力的方向总是指向轨迹的凹的一边。
4、平抛运动:将物体用一定的初速度沿水平方向抛出,不计空气阻力,物体只在重力作用下所做的运动。
分运动
(1)在水平方向上由于不受力,将做匀速直线运动;
(2)在竖直方向上物体的初速度为零,且只受到重力作用,物体做自由落体运动。
5、以抛点为坐标原点,水平方向为x轴(正方向和初速度的方向相同),竖直方向为y轴,正方向向下。
6、①水平分速度:②竖直分速度:③t秒末的合速度
④任意时刻的运动方向可用该点速度方向与x轴的正方向的夹角表示
7、匀速圆周运动:质点沿圆周运动,在相等的时间里通过的圆弧长度相同。
8、描述匀速圆周运动快慢的物理量
(1)线速度v:质点通过的弧长和通过该弧长所用时间的比值,即v=s/t,单位m/s;属于瞬时速度,既有大小,也有方向。方向为在圆周各点的切线方向上
9、匀速圆周运动是一种非匀速曲线运动,因而线速度的方向在时刻改变
(2)角速度:ω=φ/t(φ指转过的角度,转一圈φ为),单位rad/s或1/s;对某一确定的匀速圆周运动而言,角速度是恒定的
(3)周期T,频率:f=1/T
(4)线速度、角速度及周期之间的关系:
10、向心力:向心力就是做匀速圆周运动的物体受到一个指向圆心的合力,向心力只改变运动物体的速度方向,不改变速度大小。
11、向心加速度:描述线速度变化快慢,方向与向心力的方向相同,
12、注意:
(1)由于方向时刻在变,所以匀速圆周运动是瞬时加速度的方向不断改变的变加速运动。
(2)做匀速圆周运动的物体,向心力方向总指向圆心,是一个变力。
(3)做匀速圆周运动的物体受到的合外力就是向心力。
13、离心运动:做匀速圆周运动的物体,在所受的合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动
高一物理新课程标准总结篇20
物体通过的路程与所用的时间之比叫做速度。
平均速度(与位移、时间间隔相对应)
物体运动的平均速度v是物体的位移s与发生这段位移所用时间t的比值。其方向与物体的位移方向相同。单位是m/s。
v=s/t
瞬时速度(与位置时刻相对应)
瞬时速度是物体在某时刻前后无穷短时间内的平均速度。其方向是物体在运动轨迹上过该点的切线方向。瞬时速率(简称速率)即瞬时速度的大小。
速率≥速度
速度变化的快慢加速度
1.物体的加速度等于物体速度变化(vt—v0)与完成这一变化所用时间的比值a=(vt—v0)/t
2.a不由△v、t决定,而是由F、m决定。
3.变化量=末态量值—初态量值……表示变化的大小或多少
4.变化率=变化量/时间……表示变化快慢
5.如果物体沿直线运动且其速度均匀变化,该物体的运动就是匀变速直线运动(加速度不随时间改变)。
6.速度是状态量,加速度是性质量,速度改变量(速度改变大小程度)是过程量。
高一物理新课程标准总结篇21
1.功
(1)功的概念:一个物体受到力的作用,如果在力的方向上发生一段位移,我们就说这个力对物体做了功.力和在力的方向上发生位移,是做功的两个不可缺少的因素。
(2)功的计算式:力对物体所做的功的大小,等于力的大小、位移的大小、力和位移的夹角的余弦三者的乘积:W=Fscosα。
(3)功的单位:在国际单位制中,功的单位是焦耳,简称焦,符号是J.1J就是1N的力使物体在力的方向上发生lm位移所做的功。
2.功的计算
⑴恒力的功:根据公式W=Fscosα,当00≤a<900时,cosα>0,W>0,表示力对物体做正功;当α=900时,cosα=0,W=0,表示力的方向与位移的方向垂直,力不做功;当900<α<1800时,cosα<0,W<0,表示力对物体做负功,或者说物体克服力做了功。
(2)合外力的功:等于各个力对物体做功的代数和,即:W合=W1+W2+W3+……
(3)用动能定理W=ΔEk或功能关系求功.功是能量转化的量度.做功过程一定伴随能量的转化,并且做多少功就有多少能量发生转化。
3.功和冲量的比较
(1)功和冲量都是过程量,功表示力在空间上的积累效果,冲量表示力在时间上的积累效果。
(2)功是标量,其正、负表示是动力对物体做功还是物体克服阻力做功.冲量是矢量,其正、负号表示方向,计算冲量时要先规定正方向。
(3)做功的多少由力的大小、位移的大小及力和位移的夹角三个因素决定.冲量的大小只由力的大小和时间两个因素决定.力作用在物体上一段时间,力的冲量不为零,但力对物体做的功可能为零。
4.一对作用力和反作用力做功的特点
⑴一对作用力和反作用力在同一段时间内做的总功可能为正、可能为负、也可能为零。
⑵一对互为作用反作用的摩擦力做的总功可能为零(静摩擦力)、可能为负(滑动摩擦力),但不可能为正。
高一物理新课程标准总结篇22
1.万有引力定律:引力常量G=6.67×N?m2/kg2
2.适用条件:可作质点的两个物体间的相互作用;若是两个均匀的球体,r应是两球心间距.(物体的尺寸比两物体的距离r小得多时,可以看成质点)
3.万有引力定律的应用:(中心天体质量M,天体半径R,天体表面重力加速度g)
(1)万有引力=向心力(一个天体绕另一个天体作圆周运动时)
(2)重力=万有引力
地面物体的重力加速度:mg=Gg=G≈9.8m/s2
高空物体的重力加速度:mg=Gg=G0F做正功F是动力
当a=派/2w=0(cos派/2=0)F不作功
当派/2<=a<派w<0f做负功f是阻力
(3)总功的求法:
W总=W1+W2+W3……Wn
W总=F合Scosa
2、功率
(1)定义:功跟完成这些功所用时间的比值。
P=W/t功率是标量功率单位:瓦特(w)
此公式求的是平均功率
1w=1J/s1000w=1kw
(2)功率的另一个表达式:P=Fvcosa
当F与v方向相同时,P=Fv。(此时cos0度=1)
此公式即可求平均功率,也可求瞬时功率
1)平均功率:当v为平均速度时
2)瞬时功率:当v为t时刻的瞬时速度
(3)额定功率:指机器正常工作时输出功率
实际功率:指机器在实际工作中的输出功率
正常工作时:实际功率≤额定功率
(4)机车运动问题(前提:阻力f恒定)
P=FvF=ma+f(由牛顿第二定律得)
汽车启动有两种模式
1)汽车以恒定功率启动(a在减小,一直到0)
P恒定v在增加F在减小尤F=ma+f
当F减小=f时v此时有值
2)汽车以恒定加速度前进(a开始恒定,在逐渐减小到0)
a恒定F不变(F=ma+f)V在增加P实逐渐增加
此时的P为额定功率即P一定
P恒定v在增加F在减小尤F=ma+f
当F减小=f时v此时有值
3、功和能
(1)功和能的关系:做功的过程就是能量转化的过程
功是能量转化的量度
(2)功和能的区别:能是物体运动状态决定的物理量,即过程量
功是物体状态变化过程有关的物理量,即状态量
这是功和能的根本区别。
4、动能。动能定理
(1)动能定义:物体由于运动而具有的能量。用Ek表示
表达式Ek=1/2mv^2能是标量也是过程量
单位:焦耳(J)1kgm^2/s^2=1J
(2)动能定理内容:合外力做的功等于物体动能的变化
表达式W合=ΔEk=1/2mv^2-1/2mv0^2
适用范围:恒力做功,变力做功,分段做功,全程做功
高一物理新课程标准总结篇23
万有引力定律及其应用
1.万有引力定律:引力常量G=6.67×N?m2/kg2
2.适用条件:可作质点的两个物体间的相互作用;若是两个均匀的球体,r应是两球心间距.(物体的尺寸比两物体的距离r小得多时,可以看成质点)
3.万有引力定律的应用:(中心天体质量M,天体半径R,天体表面重力加速度g)
(1)万有引力=向心力(一个天体绕另一个天体作圆周运动时)
(2)重力=万有引力
地面物体的重力加速度:mg=Gg=G≈9.8m/s2
高空物体的重力加速度:mg=Gg=GG,失重:FN
6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕
注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
高一物理新课程标准总结篇24
牛顿运动定律的应用
1、运用牛顿第二定律解题的基本思路
(1)通过认真审题,确定研究对象.
(2)采用隔离体法,正确受力分析.
(3)建立坐标系,正交分解力.
(4)根据牛顿第二定律列出方程.
(5)统一单位,求出答案.
2、解决连接体问题的基本方法是:
(1)选取的研究对象.选取研究对象时可采取“先整体,后隔离”或“分别隔离”等方法.一般当各部分加速度大小、方向相同时,可当作整体研究,当各部分的加速度大小、方向不相同时,要分别隔离研究.
(2)对选取的研究对象进行受力分析,依据牛顿第二定律列出方程式,求出答案.
3、解决临界问题的基本方法是:
(1)要详细分析物理过程,根据条件变化或随着过程进行引起的受力情况和运动状态变化,找到临界状态和临界条件.
(2)在某些物理过程比较复杂的情况下,用极限分析的方法可以尽快找到临界状态和临界条件.
易错现象:
(1)加速系统中,有些同学错误地认为用拉力F直接拉物体与用一重力为F的物体拉该物体所产生的加速度是一样的。
(2)在加速系统中,有些同学错误地认为两物体组成的系统在竖直方向上有加速度时支持力等于重力。
(3)在加速系统中,有些同学错误地认为两物体要产生相对滑动拉力必须克服它们之间的静摩擦力。
高一物理新课程标准总结篇25
认识形变
1。物体形状回体积发生变化简称形变。
2。分类:按形式分:压缩形变、拉伸形变、弯曲形变、扭曲形变。
按效果分:弹性形变、塑性形变
3。弹力有无的判断:1)定义法(产生条件)
2)搬移法:假设其中某一个弹力不存在,然后分析其状态是否有变化。
3)假设法:假设其中某一个弹力存在,然后分析其状态是否有变化。
弹性与弹性限度
1。物体具有恢复原状的性质称为弹性。
2。撤去外力后,物体能完全恢复原状的形变,称为弹性形变。
3。如果外力过大,撤去外力后,物体的形状不能完全恢复,这种现象为超过了物体的弹性限度,发生了塑性形变。
探究弹力
1。产生形变的物体由于要恢复原状,会对与它接触的物体产生力的作用,这种力称为弹力。
2。弹力方向垂直于两物体的接触面,与引起形变的外力方向相反,与恢复方向相同。
绳子弹力沿绳的收缩方向;铰链弹力沿杆方向;硬杆弹力可不沿杆方向。
弹力的作用线总是通过两物体的接触点并沿其接触点公共切面的垂直方向。
3。在弹性限度内,弹簧弹力F的大小与弹簧的伸长或缩短量x成正比,即胡克定律。
F=kx
4。上式的k称为弹簧的劲度系数(倔强系数),反映了弹簧发生形变的难易程度。
5。弹簧的串、并联:串联:1/k=1/k1+1/k2并联:k=k1+k2
第二节研究摩擦力
滑动摩擦力
1。两个相互接触的物体有相对滑动时,物体之间存在的摩擦叫做滑动摩擦。
2。在滑动摩擦中,物体间产生的阻碍物体相对滑动的作用力,叫做滑动摩擦力。
3。滑动摩擦力f的大小跟正压力N(≠G)成正比。即:f=μN
4。μ称为动摩擦因数,与相接触的物体材料和接触面的粗糙程度有关。0G,失重:FN
6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕
注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
高一物理新课程标准总结篇26
考点1:共点力的平衡条件
平衡状态的定义:
如果一个物体在力的作用下保持静止或者匀速直线运动的状态,我们就说这个物体处于平衡状态。
平衡状态的条件:
在共点力作用下,物体的平衡条件是合力为零。
考点2:超重和失重
超重:物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的现象。
失重:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的现象。
考点3:从动力学看自由落体运动
物体做自由落体运动的条件是:
1,物体是从静止开始下落的,即运动的初速度为零。
2,运动过程中它只受到重力的作用。
高一物理新课程标准总结篇27
质点的运动(1)------直线运动
1)匀变速直线运动
1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/26.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:
(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。
2)自由落体运动
1.初速度Vo=0
2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算)
4.推论Vt2=2gh
注:
(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动
1.位移s=Vot-gt2/22.末速度Vt=Vo-gt(g=9.8m/s2≈10m/s2)
3.有用推论Vt2-Vo2=-2gs4.上升高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g(从抛出落回原位置的时间)
注:
(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;
(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;
(3)上升与下落过程具有对称性,如在同点速度等值反向等。
高一物理新课程标准总结篇28
力的图示
1.力的图示是用一根带箭头的线段(定量)表示力的三要素的方法。
2.图示画法:选定标度(同一物体上标度应当统一),沿力的方向从力的作用点开始按比例画一线段,在线段末端标上箭头。
3.力的示意图:突出方向,不定量。
力的等效/替代
1.如果一个力的作用效果与另外几个力的共同效果作用相同,那么这个力与另外几个力可以相互替代,这个力称为另外几个力的合力,另外几个力称为这个力的分力。
2.根据具体情况进行力的替代,称为力的合成与分解。求几个力的合力叫力的合成,求一个力的分力叫力的分解。合力和分力具有等效替代的关系。
3.实验:平行四边形定则:P58
第四节力的合成与分解
力的平行四边形定则
1.力的平行四边形定则:如果用表示两个共点力的线段为邻边作一个平行四边形,则这两个邻边的对角线表示合力的大小和方向。
2.一切矢量的运算都遵循平行四边形定则。
合力的计算
1.方法:公式法,图解法(平行四边形/多边形/△)
2.三角形定则:将两个分力首尾相接,连接始末端的有向线段即表示它们的合力。
3.设F为F1、F2的合力,θ为F1、F2的夹角,则:
F=√F12+F22+2F1F2cosθtanθ=F2sinθ/(F1+F2cosθ)
当两分力垂直时,F=F12+F22,当两分力大小相等时,F=2F1cos(θ/2)
4.1)|F1—F2|≤F≤|F1+F2|
2)随F1、F2夹角的增大,合力F逐渐减小。
3)当两个分力同向时θ=0,合力:F=F1+F2
4)当两个分力反向时θ=180°,合力最小:F=|F1—F2|
5)当两个分力垂直时θ=90°,F2=F12+F22
分力的计算
1.分解原则:力的实际效果/解题方便(正交分解)
2.受力分析顺序:G→N→F→电磁力
高一物理新课程标准总结篇29
(1)定义:地球上的物体具有跟它的高度有关的能量,叫做重力势能。
①重力势能是地球和物体组成的系统共有的,而不是物体单独具有的。②重力势能的大小和零势能面的选取有关。③重力势能是标量,但有"+“、”-"之分。
(2)重力做功的特点:重力做功只决定于初、末位置间的高度差,与物体的运动路径无关。WG=mgh.
(3)做功跟重力势能改变的关系:重力做功等于重力势能增量的负值。即。
3.探究决定动能大小的因素:
①猜想:动能大小与物体质量和速度有关。
实验研究:研究对象:小钢球方法:控制变量。
·如何判断动能大小:看小钢球能推动木块做功的多少。
·如何控制速度不变:使钢球从同一高度滚下,则到达斜面底端时速度大小相同。
·如何改变钢球速度:使钢球从不同高度滚下。
③分析归纳:保持钢球质量不变时结论:运动物体质量相同时;速度越大动能越大。
保持钢球速度不变时结论:运动物体速度相同时;质量越大动能越大;
④得出结论:物体动能与质量和速度有关;速度越大动能越大,质量越大动能也越大。
高一物理新课程标准总结篇30
一、质点
1、定义:用来代替物体而具有质量的点。
2、实际物体看作质点的条件:当物体的大小和形状相对于所要研究的问题可以忽略不计时,物体可看作质点。
二、描述质点运动的物理量
1、时间:时间在时间轴上对应为一线段,时刻在时间轴上对应于一点。与时间对应的物理量为过程量,与时刻对应的物理量为状态量。
2、位移:用来描述物体位置变化的物理量,是矢量,用由初位置指向末位置的有向线段表示。路程是标量,它是物体实际运动轨迹的长度。只有当物体作单方向直线运动时,物体位移的大小才与路程相等。
3、速度:用来描述物体位置变化快慢的物理量,是矢量。
(1)平均速度:运动物体的位移与时间的比值,方向和位移的方向相同。
(2)瞬时速度:运动物体在某时刻或位置的速度。瞬时速度的大小叫做速率。
(3)速度的测量(实验)
①原理:当所取的时间间隔越短,物体的平均速度v越接近某点的瞬时速度v。然而时间间隔取得过小,造成两点距离过小则测量误差增大,所以应根据实际情况选取两个测量点。
②仪器:电磁式打点计时器(使用4∽6V低压交流电,纸带受到的阻力较大)或者电火花计时器(使用220V交流电,纸带受到的阻力较小)。若使用50Hz的交流电,打点的时间间隔为0。02s。还可以利用光电门或闪光照相来测量。
4、加速度
(1)意义:用来描述物体速度变化快慢的物理量,是矢量。
(2)定义:其方向与Δv的方向相同或与物体受到的合力方向相同。
(3)当a与v0同向时,物体做加速直线运动;当a与v0反向时,物体做减速直线运动。加速度与速度没有必然的联系。
高一物理新课程标准总结篇31
匀变速直线运动的研究
匀变速直线运动是运动学中最典型的也是最简单的理想化的运动形式,学习本章的有关知识对于运动学将会有更深入地了解,难点在于速度、时间以及位移这三者物理量之间的关系。要熟练掌握有关的知识,灵活的加以运用。最后,本章末讲学习一种有代表性的匀变速直线运动形式:自由落体运动。
考试的要求:
Ⅰ、对所学知识要知道其含义,并能在有关的问题中识别并直接运用,相当于课程标准中的“了解”和“认识”。
Ⅱ、能够理解所学知识的确切含义以及和其他知识的联系,能够解释,在实际问题的分析、综合、推理、和判断等过程中加以运用,相当于课程标准的“理解”,“应用”。
要求Ⅱ:匀速直线运动,匀变速直线运动,速度与时间的关系,位移与时间的关系,位移与速度的关系,v-t图的物理意义以及图像上的有关信息。
高一物理新课程标准总结篇32
重力
定义:由于受到地球的吸引而使物体受到的力叫重力。
说明:
①地球附近的物体都受到重力作用。
②重力是由地球的吸引而产生的,但不能说重力就是地球的吸引力。
③重力的施力物体是地球。
④在两极时重力等于物体所受的万有引力,在其它位置时不相等。
(1)重力的大小:G=mg
说明:
①在地球表面上不同的地方同一物体的重力大小不同的,纬度越高,同一物体的重力越大,因而同一物体在两极比在赤道重力大。
②一个物体的重力不受运动状态的影响,与是否还受其它力也无关系。
③在处理物理问题时,一般认为在地球附近的任何地方重力的大小不变。
(2)重力的方向:竖直向下(即垂直于水平面)
说明:
①在两极与在赤道上的物体,所受重力的方向指向地心。
②重力的方向不受其它作用力的影响,与运动状态也没有关系。
(3)重心:物体所受重力的作用点。
重心的确定:
①质量分布均匀。物体的重心只与物体的形状有关。形状规则的均匀物体,它的重心就在几何中心上。
②质量分布不均匀的物体的重心与物体的形状、质量分布有关。
③薄板形物体的重心,可用悬挂法确定。
说明:
①物体的重心可在物体上,也可在物体外。
②重心的位置与物体所处的位置及放置状态和运动状态无关。
③引入重心概念后,研究具体物体时,就可以把整个物体各部分的重力用作用于重心的一个力来表示,于是原来的物体就可以用一个有质量的点来代替。
高一物理知识点总结梳理5篇分享